Dedekind psi function

Dedekind psi function

In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by

 \psi(n) = n \prod_{p|n}\left(1+\frac{1}{p}\right),

where the product is taken over all primes p dividing n (by convention, ψ(1) is the empty product and so has value 1). The function was introduced by Richard Dedekind in connection with modular functions.

The value of ψ(n) for the first few integers n is:

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24 ... (sequence A001615 in OEIS).

ψ(n) is greater than n for all n greater than 1, and is even for all n greater than 2. If n is a square-free number then ψ(n) = σ(n).

The ψ function can also be defined by setting ψ(pn) = (p+1)pn-1 for powers of any prime p, and then extending the definition to all integers by multiplicitivity. This also leads to a proof of the generating function in terms of the Riemann zeta function, which is

\sum \frac{\psi(n)}{n^s} = \frac{\zeta(s) \zeta(s-1)}{\zeta(2s)}.

This is also a consequence of the fact that we can write as a Dirichlet convolution of \psi= n * \epsilon_2 where ε2 is the characteristic function of the squares.

Higher Orders

The generalization to higher orders via ratios of Jordan's totient is

\psi_k(n)=\frac{J_{2k}(n)}{J_k(n)}

with Dirichlet series

\sum_{n\ge 1}\frac{\psi_k(n)}{n^s} = \frac{\zeta(s)\zeta(s-k)}{\zeta(2s)}.

It is also the Dirichlet convolution of a power and the square of the Mobius function,

ψk(n) = nk * μ2(n).

If

\epsilon_2 = 1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0\ldots

is the characteristic function of the squares, another Dirichlet convolution leads to the generalized σ-function,

\epsilon_2(n) * \psi_k(n) = \sigma_k(n).

References

  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971 (page 25, equation (1))
  • Mathar, Richard J. (2011). "Survey of Dirichlet series of multiplicative arithmetic functions". arXiv:1106.4038.  Section 3.13.2
  • OEISA065958 is ψ2, OEISA065959 is ψ3, and OEISA065960 is ψ4
  • Carella, N. A. (2010). "Squarefree Integers And Extreme Values Of Some Arithmetic Functions". arXiv:1012.4817v3. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Psi function — can refer to either*Dedekind psi function *Digamma function …   Wikipedia

  • Psi — may refer to:As a word* Psi (Greek) (Ψ, ψ) a letter of the Greek alphabet * Psi (Cyrillic) (Ѱ, ѱ), a letter of the early Cyrillic alphabet, adopted from Greek * Psi (instant messaging client), a popular Jabber client program * Psi… …   Wikipedia

  • Dedekind function — In number theory, Dedekind function can refer to any of three functions, all introduced by Richard Dedekind Dedekind eta function Dedekind psi function Dedekind zeta function This disambiguation page lists articles associated with the same title …   Wikipedia

  • Dedekindsche Psi-Funktion — Die Dedekindsche ψ Funktion (nach Richard Dedekind) ist eine multiplikative zahlentheoretische Funktion. Sie ist nicht zu verwechseln mit anderen dedekindschen Funktionen und wird mit dem kleinen griechischen Buchstaben psi (ψ) bezeichnet. Für… …   Deutsch Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Classical modular curve — In number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation Φn(x, y)=0, where for the j invariant j(τ), x=j(n τ), y=j(τ) is a point on the curve. The curve is sometimes called X0(n), though often… …   Wikipedia

  • Dedekindsche ψ-Funktion — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel gelöscht, die nicht… …   Deutsch Wikipedia

  • Axiom — This article is about logical propositions. For other uses, see Axiom (disambiguation). In traditional logic, an axiom or postulate is a proposition that is not proven or demonstrated but considered either to be self evident or to define and… …   Wikipedia

  • Fonction thêta — Fonction theta de Jacobi θ1 avec u = iπz et q = eiπτ = 0.1e0.1iπ. Par convention (mathematica) …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”