- Pars compacta
Infobox Brain
Name = PAGENAME
Latin =
GraySubject = 188
GrayPage = 802
Caption =
Caption2 =
IsPartOf =
Components =
Artery =
Vein =
BrainInfoType = hier
BrainInfoNumber = 528
MeshName =
MeshNumber =
The pars compacta is a portion of thesubstantia nigra .Anatomy
The pars compacta contains
neurons which, in humans, are coloured black by thepigment neuromelanin that increases with age. This pigmentation is visible as a distinctive black stripe in brain sections and is the origin of the name given to this area. The neurons have particularly long and thick dendrites (François et al.). The ventral dendrites, particularly, go down deeply in the pars reticulata. Other similar neurons are more sparsely distributed in the mesencephalon and constitute "groups" with no clear borders, although continuous to the pars compacta, in a prerubral position. These have been given in early works in rats with not much respect for the anatomical subdivions the name of "area A8" and "A10". The pars compacta itself ("A9") is usually subdivided into a ventral and a dorsal tier, the last being calbindin positive. [cite journal | author=Francois, C.; Yelnik, J.; Tande, D.; Agid, Y. & Hirsch, E.C. | title=Dopaminergic cell group A8 in the monkey: anatomical organization and projections to the striatum | journal=Journal of Comparative Neurology | pages=334–347 | volume=414 | issue=3 | pmid=10516600 | doi=10.1002/(SICI)1096-9861(19991122)414:3<334::AID-CNE4>3.0.CO;2-X | year=1999 | doilabel=10.1002/(SICI)1096-9861(19991122)414:3334::AID-CNE43.0.CO;2-X] The ventral tier is considered as A9v. The dorsal tier A9d is linked to an ensemble comprising also A8 and A10, [cite journal | author=Feigenbaum Langer, L.; Jimenez-Castellanos, J. & Graybiel, A.M. | title=The substantia nigra and its relations with the striatum in the monkey | journal=Progress in Brain Research | year=1991 | pages=81–99 | volume=87 | pmid=1678193] A8, A9d and A10 representing 28% of dopaminergic neurons. The long dendrites of compacta neurons receive striatal information. This cannot be the case for the more posterior groups that are located outside the striato-pallidonigral bundle territory. Neurons of the pars compacta receive inhibiting signals from the collateral axons from the neurons of the pars reticulata. [cite journal | author=Hajos, M. & Greenfield, S.A. | title=Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra | journal=Brain Research | year=1994 | pages=216–224 | volume=660 | issue=2|pmid=7820690 | doi=10.1016/0006-8993(94)91292-0] All these neurons send theiraxon s along thenigrostriatal pathway to thestriatum where they release theneurotransmitter dopamine . There is an organization in which dopaminergic neurons of the fringes (the lowest) go to the sensorimotor striatum and the highest to the associative striatum. Dopaminergic axons also innervate other elements of the basal ganglia system including the lateral and medial pallidum, [cite journal | author=Lavoie, B., Smith, Y., Parent, A. | title=Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry | year=1989 | pages=36–52 | volume=289 | issue=1 | pmid=2572613] substantia nigra pars reticulata, and thesubthalamic nucleus . [cite journal | author=Cragg S.J.; Baufreton J.; Xue Y.; Bolam J.P.; & Bevan M.D. | title=Synaptic release of dopamine in the subthalamic nucleus | journal=European Journal of Neuroscience | year=2004 | pages=1788–1802 | volume=20 | issue=7 | pmid=15380000 | doi=10.1111/j.1460-9568.2004.03629.x]Function
The function of the dopamine neurons in the substantia nigra pars compacta is complex. Contrary to what was thought initially it is not directly linked to movements. "Dopamine neurons are activated by novel, unexpected stimuli, by primary rewards in the absence of predictive stimuli and during learning". [cite journal | author=Schultz, W. | title=Activity of dopamine neurons in the behaving primate | journal=Seminar in Neuroscience | year=1992 | pages=129–138 | volume=4 | doi=10.1016/1044-5765(92)90011-P] Dopamine neurons are thought to be involved in learning to predict which behaviours will lead to a reward (for example
food orsex ). In particular, it is suggested that dopamine neurons fire when a reward is greater than that previously expected; a key component of many reinforcement learning models. This signal can then be used to update the expected value of that action. Many drugs of abuse, such ascocaine , mimic this reward response—providing an explanation for their addictive nature.Pathology
Degeneration of pigmented neurons in this region is the principal
pathology that underliesParkinson's disease . In a few people, the cause of Parkinson's disease is genetic, but in most cases, the reason for the death of these dopamine neurons is unknown.Parkinsonism can also be produced by viral infections such asencephalitis or a number of toxins, such asMPTP , an industrial toxin which can be mistakenly produced during synthesis of themeperidine analogMPPP . Many such toxins appear to work by producingreactive oxygen species . Binding toneuromelanin by means ofcharge transfer complex es may concentrate radical-generating toxins in the substantia nigra.Pathological changes to the dopaminergic neurons of the pars compacta are also thought to be involved in
schizophrenia (see thedopamine hypothesis of schizophrenia ) and psychomotor retardation sometimes seen inclinical depression .References
Wikimedia Foundation. 2010.