Efficient coding hypothesis

Efficient coding hypothesis

The efficient coding hypothesis was proposed by Horace Barlow in 1961 as a theoretical model of sensory coding in the brain. Within the brain, neurons often communicate with one another by sending electrical impulses referred to as action potentials or spikes. One goal of sensory neuroscience is to decipher the meaning of these spikes in order to understand how the brain represents and processes information about the outside world. Barlow hypothesized that the spikes in the sensory system formed a neural code for efficiently representing sensory information. By efficient Barlow meant that the code minimized the number of spikes needed to transmit a given signal. This is somewhat analogous to transmitting information across the internet, where different file formats can be used to transmit a given image. Different file formats require different number of bits for representing the same image at given distortion level, and some are better suited for representing certain classes of images than others. According to this model, the brain is thought to use a code which is suited for representing visual and audio information representative of an organism's natural environment.

Efficient coding and information theory

The development of the Barlow's hypothesis was influenced by information theory introduced by Claude Shannon only a decade before. Information theory provides the mathematical framework for analyzing communication systems. It formally defines concepts such as information, channel capacity, and redundancy. Barlow's model treats the sensory pathway as a communications channel where neuronal spiking is an efficient code for representing sensory signals. The spiking code aims to maximize available channel capacity by minimizing the redundancy between representational units.

A key prediction of the efficient coding hypothesis is that sensory processing in the brain should be adapted to natural stimuli. Neurons in the visual (auditory) system should be optimized for coding images (sounds) representative of those found in nature. Researchers have shown that filters optimized for coding natural images lead to filters which resemble the receptive fields of simple-cells in V1. In the auditory domain, optimizing a network for coding natural sounds leads to filters which resemble the impulse response of cochlear filters found in the inner ear.

References

* Barlow, H. (1961) 'Possible principles underlying the transformation of sensory messages' in Sensory Communication, MIT Press

* Lewicki, M.S. (2002) Efficient coding of natural sounds. Nature: Neuroscience, 5(4):356–363

* Olshausen, B. A. and Field, D.J. (1997) Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23):3311–3325


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Sensory neuroscience — is a subfield of neuroscience which explores the anatomy and physiology of neurons that are part of sensory systems such as vision, hearing, and olfaction. Neurons in sensory regions of the brain respond to stimuli by firing one or more nerve… …   Wikipedia

  • Computational neuroscience — is the study of brain function in terms of the information processing properties of the structures that make up the nervous system.[1] It is an interdisciplinary science that links the diverse fields of neuroscience, cognitive science and… …   Wikipedia

  • Neural network — For other uses, see Neural network (disambiguation). Simplified view of a feedforward artificial neural network The term neural network was traditionally used to refer to a network or circuit of biological neurons.[1] The modern usage of the term …   Wikipedia

  • Structural information theory — (SIT) is a theory about human perception and, in particular, about perceptual organization, that is, about the way the human visual system organizes a raw visual stimulus into objects and object parts. SIT was initiated, in the 1960s, by Emanuel… …   Wikipedia

  • Lateral geniculate nucleus — Brain: Lateral geniculate nucleus Hind and mid brains; postero lateral view. (Lateral geniculate body visible near top.) Latin Corpus geniculatum laterale Part of Thalamus System …   Wikipedia

  • Life Sciences — ▪ 2009 Introduction Zoology       In 2008 several zoological studies provided new insights into how species life history traits (such as the timing of reproduction or the length of life of adult individuals) are derived in part as responses to… …   Universalium

  • cell — cell1 cell like, adj. /sel/, n. 1. a small room, as in a convent or prison. 2. any of various small compartments or bounded areas forming part of a whole. 3. a small group acting as a unit within a larger organization: a local cell of the… …   Universalium

  • heredity — /heuh red i tee/, n., pl. heredities. Biol. 1. the transmission of genetic characters from parents to offspring: it is dependent upon the segregation and recombination of genes during meiosis and fertilization and results in the genesis of a new… …   Universalium

  • Evolution of sexual reproduction — The evolution of sexual reproduction is currently described by several competing scientific hypotheses. All sexually reproducing organisms derive from a common ancestor which was a single celled eukaryotic species[1]. Many protists reproduce… …   Wikipedia

  • Nobel Prizes — ▪ 2009 Introduction Prize for Peace       The 2008 Nobel Prize for Peace was awarded to Martti Ahtisaari, former president (1994–2000) of Finland, for his work over more than 30 years in settling international disputes, many involving ethnic,… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”