Variance reduction

Variance reduction

In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates that can be obtained for a given number of iterations. Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used. The main ones are: Common random numbers, antithetic variates, control variates, importance sampling and stratified sampling.

Common Random Numbers (CRN)

The common random numbers variance reduction technique is a popular and useful variance reduction technique which applies when we are comparing two or more alternative configurations (of a system) instead of investigating a single configuration. CRN has also been called "Correlated sampling", "Matched streams" or "Matched pairs".

CRN requires synchronization of the random number streams, which ensures that in addition to using the same random numbers to simulate all configurations, a specific random number used for a specific purpose in one configuration is used for exactly the same purpose in all other configurations. For example, in queueing theory, if we are comparing two different configurations of tellers in a bank, we would want the (random) time of arrival of the "N"th customer to be the same for both configurations.

Underlying principle of the CRN technique

Suppose X_{1j} and X_{2j} are the observations from the first and second configurations on the "j"th independent replication.

We want to estimate :xi= E(X_{1j})-E(X_{2j})=mu_1-mu_2. ,

If we perform "n" replications of each configuration and let :Z_j=X_{1j}-X_{2j} quadmbox{for } j=1,2,ldots, n, then E(Z_j)=xi and "Z"("n") = Σ "Z""j" / "n" is an unbiased estimator of xi.

And since the Z_j's are independent identically distributed random variables, :operatorname{Var} [Z(n)] = frac{operatorname{Var}(Z_j)}{n}.

In case of independent sampling, i.e., no common random numbers used then Cov("X"1"j", "X"2"j") = 0. But if we succeed to induce an element of positive correlation between "X"1 and "X"2 such that Cov("X"1"j", "X"2"j") > 0, it can be seen from the equation above that the variance is reduced.

It can also be observed that if the CRN induces a negative correlation, i.e., Cov("X"1"j", "X"2"j") < 0, this technique can actually backfire, where the variance is increased and not decreased (as intended).


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Reduction — Reduction, reduced, or reduce may refer to:cienceChemistry*Reduction – chemical reaction in which atoms have their oxidation number (oxidation state) changed. **Reduced gas – a gas with a low oxidation number **Ore reduction: see… …   Wikipedia

  • Reduction de Jordan — Réduction de Jordan Pour les articles homonymes, voir Jordan. La réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Jordan. Cette réduction est tellement employée, en particulier en analyse pour la …   Wikipédia en Français

  • Réduction de jordan — Pour les articles homonymes, voir Jordan. La réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d… …   Wikipédia en Français

  • Réduction de la variance — La réduction de la variance regroupe l ensemble des techniques, plus ou moins simples, qui permettent de réduire la variance des estimateurs de Monte Carlo. En voici une courte liste : Variable antithétique : on introduit une seconde… …   Wikipédia en Français

  • Réduction de Jordan — Pour les articles homonymes, voir Jordan. La réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d… …   Wikipédia en Français

  • Nonlinear dimensionality reduction — High dimensional data, meaning data that requires more than two or three dimensions to represent, can be difficult to interpret. One approach to simplification is to assume that the data of interest lies on an embedded non linear manifold within… …   Wikipedia

  • Dimension reduction — For dimensional reduction in physics, see Dimensional reduction. In machine learning, dimension reduction is the process of reducing the number of random variables under consideration, and can be divided into feature selection and feature… …   Wikipedia

  • Matrice De Variance-Covariance — Une matrice de variance covariance est une matrice carrée caractérisant les interactions (linéaires) entre p variables aléatoires . Sommaire 1 Définition 2 Propriétés …   Wikipédia en Français

  • Matrice de variance-covariance — Une matrice de variance covariance est une matrice carrée caractérisant les interactions (linéaires) entre p variables aléatoires . Sommaire 1 Définition 2 Propriétés 3 …   Wikipédia en Français

  • Monte Carlo methods in finance — Monte Carlo methods are used in finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining their average… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”