Goursat's lemma

Goursat's lemma

Goursat's lemma is an algebraic theorem.

Let G, G' be groups, and let H be a subgroup of G imes G' such that the two projections p_1: H ightarrow G and p_2: H ightarrow G' are surjective. Let N be the kernel of p_2 and N' the kernel of p_1. One can identify N as a normal subgroup of G, and N' as a normal subgroup of G'. Then the image of H in G/N imes G'/N' is the graph of an isomorphism G/Napprox G'/N'.

Proof of Goursat's Lemma

Before proceeding with the proof, N and N' are shown to be normal in G imes {e'} and {e} imes G', respectively. It is in this sense that N and N' can be identified as normal in "G" and "G"', respectively.

Since p_2 is a homomorphism, its kernel "N" is normal in "H". Moreover, given g in G, there exists h=(g,g') in H, since p_1 is surjective. Therefore, p_1(N) is normal in "G", viz::gp_1(N)=p_1(h)p_1(N)=p_1(hN)=p_1(Nh)=p_1(N)g.It follows that N is normal in G imes {e'} since: (g,e')N = (g,e')(p_1(N) imes {e'}) = gp_1(N) imes {e'} = p_1(N)g imes {e'} = (p_1(N) imes {e'})(g,e')=N(g,e').

The proof that N' is normal in {e} imes G' proceeds in a similar manner.

Given the identification of G with G imes {e'}, we can write G/N and gN instead of (G imes {e'})/N and (g,e')N, g in G. Similarly, we can write G'/N' and g'N', g' in G'.

On to the proof. Let h=(g,g') in H. Consider the map H ightarrow G/N imes G'/N' defined by h mapsto (gN, g'N'). The image of H under this map is {(gN,g'N') | h in H }. This relation is the graph of a well-defined function G/N ightarrow G'/N' provided gN=N Rightarrow g'N'=N', essentially an application of the vertical line test.

Since gN=N (more properly, (g,e')N=N), we have (g,e') in N subset H. Thus (e,g') = (g,g')(g^{-1},e') in H, whence (e,g') in N', that is, g'N'=N'. Note that by symmetry, it is immediately clear that g'N'=N' Rightarrow gN=N, i.e., this function also passes the horizontal line test, and is therefore one-to-one. The fact that the map is a homomorphism and is surjective also follows trivially.

References

* Kenneth A. Ribet (Autumn 1976), "Galois Action on Division Points of Abelian Varieties with Real Multiplications", "American Journal of Mathematics", Vol. 98, No. 3, 751-804.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Lemma von Goursat — Das Lemma von Goursat, manchmal auch als Satz von Goursat bezeichnet, ist ein Satz aus der Funktionentheorie. Das Lemma von Goursat ist eine Vorstufe des Cauchyschen Integralsatzes und wird auch oft für dessen Beweis genutzt. Es spielt im Aufbau… …   Deutsch Wikipedia

  • Satz von Goursat — Das Lemma von Goursat, manchmal auch als Satz von Goursat bezeichnet, ist ein Satz aus der Funktionentheorie. Das Lemma von Goursat ist eine Vorstufe des Cauchyschen Integralsatzes und wird auch oft für dessen Beweis genutzt. Es spielt im Aufbau… …   Deutsch Wikipedia

  • Edouard Goursat — Édouard Jean Baptiste Goursat (* 21. Mai 1858 in Lanzac, Département Lot, Frankreich; † 25. November 1936 in Paris, Frankreich) war ein französischer Mathematiker. Nach ihm wurde das Lemma von Goursat benannt …   Deutsch Wikipedia

  • Édouard Goursat — Édouard Jean Baptiste Goursat (* 21. Mai 1858 in Lanzac, Département Lot, Frankreich; † 25. November 1936 in Paris, Frankreich) war ein französischer Mathematiker, der als Verfasser eines klassischen Analysis Lehrbuchs bekannt ist. Diese von… …   Deutsch Wikipedia

  • Direct product of groups — Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product, direct sum semidirect product, wreath product …   Wikipedia

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom …   Deutsch Wikipedia

  • List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

  • Automorphism — In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms… …   Wikipedia

  • Henri Lebesgue — Infobox Scientist name =Henri Lebesgue box width =26em image width =225px caption = birth date =1875 06 28 birth place =Beauvais, France death date =death date and age|1941|7|26|1875|6|28 death place =Paris, France residence = citizenship =… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”