Axiom of dependent choice

Axiom of dependent choice

In mathematics, the axiom of dependent choices, denoted DC, is a weak form of the axiom of choice (AC) which is still sufficient to develop most of real analysis. Unlike full AC, DC is insufficient to prove (given ZF) that there is a nonmeasurable set of reals, or that there is a set of reals without the property of Baire or without the perfect set property.

The axiom can be stated as follows: For any nonempty set X and any entire binary relation R on X, there is a sequence (xn) in X such that xnRxn+1 for each n in N. (Here an entire binary relation on X is one such that for each a in X there is a b in X such that aRb.) Note that even without such an axiom we could form the first n terms of such a sequence, for any natural number n; the axiom of dependent choices merely says that we can form a whole sequence this way.

If the set X above is restricted to be the set of all real numbers, the resulting axiom is called DCR.

DC is the fragment of AC required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step.

DC is (over the theory ZF) equivalent to the statement that every (nonempty) pruned tree has a branch. It is also equivalent[1] to the Baire category theorem for complete metric spaces.

The axiom of dependent choice implies the Axiom of countable choice, and is strictly stronger.

Footnotes

  1. ^ Blair, Charles E. The Baire category theorem implies the principle of dependent choices. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 10, 933--934.

References

  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Axiom of countable choice — The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory, similar to the axiom of choice. It states that any countable collection of non empty sets must have a choice function. Spelled out, this means… …   Wikipedia

  • Axiom of choice — This article is about the mathematical concept. For the band named after it, see Axiom of Choice (band). In mathematics, the axiom of choice, or AC, is an axiom of set theory stating that for every family of nonempty sets there exists a family of …   Wikipedia

  • Axiom — This article is about logical propositions. For other uses, see Axiom (disambiguation). In traditional logic, an axiom or postulate is a proposition that is not proven or demonstrated but considered either to be self evident or to define and… …   Wikipedia

  • Banach–Tarski paradox — The Banach–Tarski paradox is a theorem in set theoretic geometry which states that a solid ball in 3 dimensional space can be split into several non overlapping pieces, which can then be put back together in a different way to yield two identical …   Wikipedia

  • Constructivism (mathematics) — In the philosophy of mathematics, constructivism asserts that it is necessary to find (or construct ) a mathematical object to prove that it exists. When one assumes that an object does not exist and derives a contradiction from that assumption,… …   Wikipedia

  • Constructive set theory — is an approach to mathematical constructivism following the program of axiomatic set theory. That is, it uses the usual first order language of classical set theory, and although of course the logic is constructive, there is no explicit use of… …   Wikipedia

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • List of axioms — This is a list of axioms as that term is understood in mathematics, by Wikipedia page. In epistemology, the word axiom is understood differently; see axiom and self evidence. Individual axioms are almost always part of a larger axiomatic… …   Wikipedia

  • König's lemma — or König s infinity lemma is a theorem in graph theory due to Dénes Kőnig (1936). It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated… …   Wikipedia

  • Finite set — In mathematics, a set is called finite if there is a bijection between the set and some set of the form {1, 2, ..., n} where n is a natural number. (The value n = 0 is allowed; that is, the empty set is finite.) An infinite set is a set which is… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”