Möbius transform

Möbius transform
The Möbius transform should not be confused with Möbius transformations.

In mathematics, the Möbius transform Tf of a function f defined on the positive integers is defined by

(Tf)(n)=\sum_{d\mid n} f(d)\mu(n/d)=\sum_{d\mid n} f(n/d)\mu(d)

where μ is the classic Möbius function. In more common usage, the function Tf is called the Möbius inverse of f.

(The notation d | n means d is a divisor of n.)

This function is named in honor of August Ferdinand Möbius.

The transform takes multiplicative functions to multiplicative functions. On Dirichlet series generating functions it corresponds to division by the Riemann zeta function.

Series relations

Let

a_n=\sum_{d\mid n} b_d

so that

b_n=\sum_{d\mid n} \mu\left(\frac{n}{d}\right)a_d

be its transform. The transforms are related by means of series: the Lambert series

\sum_{n=1}^\infty a_n x^n = 
\sum_{n=1}^\infty b_n \frac{x^n}{1-x^n}

and the Dirichlet series:

\sum_{n=1}^\infty \frac {a_n} {n^s} = \zeta(s)
\sum_{n=1}^\infty \frac{b_n}{n^s}

where ζ(s) is the Riemann zeta function.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − …   Wikipedia

  • Möbius inversion formula — In mathematics, the classic Möbius inversion formula was introduced into number theory during the 19th century by August Ferdinand Möbius. Other Möbius inversion formulas are obtained when different local finite partially ordered sets replace the …   Wikipedia

  • August Ferdinand Möbius — Infobox Scientist box width = 300px name = August Möbius image size = 300px caption = August Ferdinand Möbius (1790 ndash;1868) birth date = November 17, 1790 birth place = Schulpforta, Saxony Anhalt, Germany death date = September 26, 1868 death …   Wikipedia

  • Binomial transform — In combinatorial mathematics the binomial transform is a sequence transformation (ie, a transform of a sequence) that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial… …   Wikipedia

  • Transformee de Mobius — Transformée de Möbius Les transformées de Möbius ne doivent pas être confondues avec la transformation de Möbius. La transformée de Möbius de la fonction f définie sur les entiers strictement positifs, est la fonction Tf définie comme suit  …   Wikipédia en Français

  • Transformée de möbius — Les transformées de Möbius ne doivent pas être confondues avec la transformation de Möbius. La transformée de Möbius de la fonction f définie sur les entiers strictement positifs, est la fonction Tf définie comme suit : , où μ est la… …   Wikipédia en Français

  • Bilinear transform — The bilinear transform (also known as Tustin s method) is used in digital signal processing and discrete time control theory to transform continuous time system representations to discrete time and vice versa. The bilinear transform is a… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Moebius — or Möbius may refer to: Contents 1 People 2 Mathematics 3 Gaming …   Wikipedia

  • Sequence transformation — In mathematics, a sequence transformation is an operator acting on a given space of sequences. Sequence transformations include linear mappings such as convolution with another sequence, and resummation of a sequence and, more generally, are… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”