Linear algebraic group

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible "n"×"n" matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation MTM = I where MT is the transpose of M.

The main examples of linear algebraic groups are certain of the Lie groups, where the underlying field is the real or complex field. (For example, every compact Lie group can be regarded as the group of points of a real linear algebraic group, essentially by the Peter-Weyl theorem.)These were the first algebraic groups to be extensively studied. Such groups were known for a long time before their abstract algebraic theory was developed according to the needs of major applications. Compact Lie groups were considered by Élie Cartan, Ludwig Maurer, Wilhelm Killing, and Sophus Lie in the 1880s and 1890s in the context of differential equations and Galois theory. However, a purely algebraic theory wasn't sought for until around 1950, with Armand Borel as one of its pioneers. The Picard-Vessiot theory did lead to algebraic groups.

The first basic theorem of the subject is that any "affine" algebraic group is a linear algebraic group: that is, any affine variety V that has an algebraic group law has a "faithful" linear representation, over the same field. For example the "additive group" of an "n"-dimensional vector space has a faithful representation as "n"+1×"n"+1 matrices.

One can define the Lie algebra of an algebraic group purely algebraically (it consists of the dual number points based at the identity element); and this theorem shows that we get a matrix Lie algebra. A linear algebraic group G consists of a finite number of irreducible components, that are in fact also the connected components: the one Go containing the identity will be a normal subgroup of G.

One of the first uses for the theory was to define the Chevalley groups.

The deeper structure theory applies to connected linear algebraic groups G, and begins with the definition of Borel subgroups B. These turn out to be maximal as connected solvable subgroups (i.e., subgroups with composition series having as factors one-dimensional subgroups, all of which are groups of additive or multiplicative type); and also minimal such that G/B is a projective variety.

Non-algebraic Lie groups

There are several classes of examples of Lie groups that aren't the real or complex points of an algebraic group.

*Any Lie group with an infinite group of components G/Go cannot be realized as an algebraic group (see identity component).
*The center of a linear algebraic group is again a linear algebraic group. Thus, any group whose center has infinitely many components is not a linear algebraic group. An interesting example is the universal cover of SL2(R). This is a Lie group that maps infinite-to-one to SL2(R), since the fundamental group is here infinite cyclic - and in fact the cover has no faithful matrix representation.
*The general solvable Lie group need not have a group law expressible by polynomials.

ee also

*Differential Galois theory
*Group of Lie type is a group of rational points of a linear algebraic group.

References

A good introduction to the theory of linear algebraic groups is:
*Borel, Armand. Linear Algebraic Groups (2nd ed.). New York: Springer-Verlag. ISBN 0-387-97370-2.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Algebraic group — In algebraic geometry, an algebraic group (or group variety) is a group that is an algebraic variety, such that the multiplication and inverse are given by regular functions on the variety. In category theoretic terms, an algebraic group is a… …   Wikipedia

  • Adelic algebraic group — In mathematics, an adelic algebraic group is a topological group defined by an algebraic group G over a number field K , and the adele ring A = A ( K ) of K . It consists of the points of G having values in A ; the definition of the appropriate… …   Wikipedia

  • Semisimple algebraic group — In mathematics, especially in the areas of abstract algebra and algebraic geometry studying linear algebraic groups, a semisimple algebraic group is a type of matrix group which behaves much like a semisimple Lie algebra or semisimple ring.… …   Wikipedia

  • Group theory — is a mathematical discipline, the part of abstract algebra that studies the algebraic structures known as groups. The development of group theory sprang from three main sources: number theory, theory of algebraic equations, and geometry. The… …   Wikipedia

  • Group of Lie type — In mathematics, a group of Lie type G(k) is a (not necessarily finite) group of rational points of a reductive linear algebraic group G with values in the field k. Finite groups of Lie type form the bulk of nonabelian finite simple groups.… …   Wikipedia

  • Group representation — In the mathematical field of representation theory, group representations describe abstract groups in terms of linear transformations of vector spaces; in particular, they can be used to represent group elements as matrices so that the group… …   Wikipedia

  • Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines …   Wikipedia

  • Algebraic torus — In mathematics, an algebraic torus is a type of commutative affine algebraic group. These groups were named by analogy with the theory of tori in Lie group theory (see maximal torus). The theory of tori is in some sense opposite to that of… …   Wikipedia

  • Group ring — This page discusses the algebraic group ring of a discrete group; for the case of a topological group see group algebra, and for a general group see Group Hopf algebra. In algebra, a group ring is a free module and at the same time a ring,… …   Wikipedia

  • List of algebraic geometry topics — This is a list of algebraic geometry topics, by Wikipedia page. Contents 1 Classical topics in projective geometry 2 Algebraic curves 3 Algebraic surfaces 4 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”