Pólya conjecture

Pólya conjecture

In mathematics, the Pólya conjecture states that 'most' (i.e. more than 50%) of the natural numbers less than any given number have an "odd" number of prime factors. The conjecture was posited by the Hungarian mathematician George Pólya in 1919, and disproven, i.e. shown to be false, in 1958. The size of the smallest counter-example is often used to show how a conjecture can be true for many numbers, and still be false.

tatement

Pólya's conjecture states that for any "n" (> 1), if we divide the natural numbers less than or equal to "n" (excluding 0) into those which have an "odd" number of prime factors, and those which have an "even" number of prime factors, then the former set has more members than the latter set, or the same number of members. (Repeated prime factors are counted the requisite number of times - thus 24 = 23 × 31 has 3 + 1 = 4 factors i.e. an even number of factors, while 30 = 2 × 3 × 5 has 3 factors, i.e. an odd number of factors.)

Equivalently, it can be stated in terms of the summatory Liouville function, the conjecture being that

:L(n) = sum_{k=1}^n lambda(k) leq 0

for all "n". Here, lambda(k)=(-1)^{Omega(k)} is positive if the number of prime factors of the integer "k" is even, and is negative if it is odd. The big Omega function counts the total number of prime factors of an integer.

Disproof

Pólya's conjecture was disproven by C. B. Haselgrove in 1958. He showed that the conjecture has a counterexample, which he estimated to be around 1.845 × 10361.

An explicit counterexample, of "n" = 906180359 was given by R. S. Lehman in 1960; the smallest counterexample is "n" = 906150257, found by Minoru Tanaka in 1980.

The Pólya conjecture fails to hold for most values of n in the region of 906150257 ≤ "n" ≤ 906488079. In this region, the function reaches a maximum value of 829 at "n" = 906316571.

References

* G. Pólya, "Verschiedene Bemerkungen zur Zahlentheorie." "Jahresbericht der deutschen Math.-Vereinigung" 28 (1919), 31-40.
*cite journal
first = C.B.
last = Haselgrove
year = 1958
title = A disproof of a conjecture of Pólya
journal = Mathematika
volume = 5
pages = 141–145

* R.S. Lehman, "On Liouville's function." Math. Comp. 14 (1960), 311-320.
* M. Tanaka, "A Numerical Investigation on Cumulative Sum of the Liouville Function." Tokyo Journal of Mathematics 3, (1980) 187-189.
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Hilbert–Pólya conjecture — In mathematics, the Hilbert–Pólya conjecture is a possible approach to the Riemann hypothesis, by means of spectral theory.Initial hunchesDavid Hilbert and George Pólya speculated that real number values of t such that : frac12 + it is a zero of… …   Wikipedia

  • Conjecture de Pólya — Fonction sommatoire de la fonction de Liouville L(n) jusqu à n = 107 …   Wikipédia en Français

  • Conjecture de Hilbert-Pólya — En mathématiques, la conjecture de Hilbert Pólya est une approche possible de l hypothèse de Riemann, à l aide de la théorie spectrale. Sommaire 1 Premières idées 2 Les années 50 et la formules des traces de Selberg 3 …   Wikipédia en Français

  • Conjecture — For text reconstruction, see Conjecture (textual criticism). A conjecture is a proposition that is unproven but is thought to be true and has not been disproven. Karl Popper pioneered the use of the term conjecture in scientific philosophy.… …   Wikipedia

  • Conjecture De Hilbert-Pólya — En mathématiques, la conjecture de Hilbert Pólya est une approche possible de l hypothèse de Riemann, à l aide de la théorie spectrale. Sommaire 1 Premières idées 2 Les années 50 et la formules des traces de Selberg …   Wikipédia en Français

  • Conjecture de Hilbert-Polya — Conjecture de Hilbert Pólya En mathématiques, la conjecture de Hilbert Pólya est une approche possible de l hypothèse de Riemann, à l aide de la théorie spectrale. Sommaire 1 Premières idées 2 Les années 50 et la formules des traces de Selberg …   Wikipédia en Français

  • Conjecture de hilbert-pólya — En mathématiques, la conjecture de Hilbert Pólya est une approche possible de l hypothèse de Riemann, à l aide de la théorie spectrale. Sommaire 1 Premières idées 2 Les années 50 et la formules des traces de Selberg …   Wikipédia en Français

  • Polya — George Pólya George Pólya vers 1973 George (György) Pólya, né à Budapest (Hongrie) le 13 décembre 1887 et mort à Palo Alto (États Unis le 7 septembre 1985, est un mathématicien américain d origine hongroise …   Wikipédia en Français

  • Pólya — George Pólya George Pólya vers 1973 George (György) Pólya, né à Budapest (Hongrie) le 13 décembre 1887 et mort à Palo Alto (États Unis le 7 septembre 1985, est un mathématicien américain d origine hongroise …   Wikipédia en Français

  • George Pólya — (b. December 13, 1887 ndash; d. September 7, 1985, in Hungarian Pólya György ) was a Hungarian mathematician.Life and worksHe was born as Pólya György in Budapest, Hungary, and died in Palo Alto, California, USA. He was a professor of mathematics …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”