- Ultraluminous X-ray source
An ultra-luminous X-ray source (ULX) is an astronomical source of
X-rays that is not in the nucleus of agalaxy , and is more luminous than 1039erg /s (1032watt s), assuming that it radiates isotropically. Typically there is about one ULX per galaxy in galaxies which host ULXs, but some galaxies contain many ULXs. TheMilky Way does not contain a ULX. The main interest in ULXs stems from the fact that their luminosity exceeds theEddington luminosity ofneutron stars and evenstellar black hole s. It is not known what powers ULXs; models include beamed emission of stellar mass objects, accretingintermediate-mass black hole s, and super-Eddington emission.History
ULXs were first discovered in the 1980s by the Einstein space observatory. Later observations were made by
ROSAT . Great progress has been made by the X-raysatellite sXMM-Newton and Chandra, which have a much betterspectral andangular resolution .Observational facts on ULXs
A survey of ULXs by Chandra observations [http://xxx.sissa.it/abs/astro-ph/0405498] shows that there is approximately one ULX per galaxy in galaxies which host ULXs (most do not). ULXs are found in all types of galaxies, including
elliptical galaxies but are more ubiquitous in star-forming galaxies and in gravitationally interacting galaxies. Tens of percents of ULXs are in fact backgroundquasars ; the probability for a ULX to be a background source is larger in elliptical galaxies than inspiral galaxies .Models
The fact that ULXs have Eddington luminosities larger than that of stellar mass objects implies that they are different from normal
X-ray binaries . There are several models for ULXs, and it is likely that different models apply for different sources.Beamed emission — If the emission of the sources is strongly beamed, the Eddington argument is circumvented twice: first because the actual
luminosity of the source is lower than inferred, and second because the accreted gas may come from a different direction than that in which thephotons are emitted. Modelling indicates that stellar mass sources may reach luminosities up to erg/s, enough to explain most of the sources, but too low for the most luminous sources. If the source is stellar mass and has athermal spectrum , itstemperature should be high, temperature times theBoltzmann constant "kT" ≈ 1 keV, andquasi-periodic oscillations are not expected.Intermediate-mass black holes —
Black holes are observed in Nature with masses of the order of ten times the mass of theSun , and with masses of millions to billions the solar mass. The former are 'stellar black hole s' the end product of massive stars, while the latter are massive black holes, and exist in the centers of galaxies. Intermediate-mass black holes (IMBHs) are a hypothetical third class of objects, with masses in the range of hundreds to thousands of solar masses. Intermediate-mass black holes are light enough not to sink to the center of their host galaxies bydynamical friction , but sufficiently massive to be able to emit at ULX luminosities without exceeding theEddington limit . If a ULX is an intermediate-mass black hole, in the high/soft state it should have a thermal component from an accretion disk peaking at a relatively low temperature ("kT" ≈ 0.1 keV) and it may exhibit quasi-periodic oscillation at relatively lowfrequencies .An argument made in favor of some sources as possible IMBHs is the analogy of the X-ray spectra as scaled-up stellar mass black hole X-ray binaries. The spectra of X-ray binaries have been observed to go through various transition states. The most notable of these states are the low/hard state and the high/soft state (see [http://arxiv.org/abs/astro-ph/0306213 McClintock & Remillard review] ). The low/hard state or power-law dominated state is characterized by an absorbed power-law X-ray spectrum with spectral index from 1.5-2.0 (hard X-ray spectrum). Historically, this state was associated with a lower luminosity, though with better observations with satellites such as RXTE, this is not necessarily the case. The high/soft state is characterized by an absorbed thermal component (blackbody with a disk temperature of ("kT" ≈ 1.0 keV) and power-law (spectral index ≈ 2.5). At least one ULX source, Holmberg II X-1, has been observed in states with spectra characteristic of both the high and low state. This suggests that some ULXs may be accreting IMBHs (see [http://arxiv.org/abs/astro-ph/0512480 Winter, Mushotzky, Reynolds 05] ).
Background
quasars — A significant fraction of observed ULXs are in fact background sources. Such sources may be identified by a very low temperature (e.g. the soft excess in PG quasars).Super Nova remnants — Bright Super Nova (SN) remnants may perhaps reach luminosities as high as 1039 erg/s (1032 W). If a ULX is a SN remnant it is not variable on short time-scales, and fades on a time-scale of the order of a few years.Notable ULXs
Holmberg II X-1: This famous ULX resides in a dwarf galaxy. Multiple observations with XMM have revealed the source in both a low/hard and high/soft state, suggesting that this source could be a scaled-up X-ray binary or accreting IMBH.
M74: Possibly containing an
intermediate-mass black hole , as observed by Chandra in2005 .M82-X1: This is the most luminous ULX, and has often been marked as the best candidate to host an intermediate-mass black hole. M82-X1 is associated with a
star cluster , exhibitsquasi-periodic oscillations (QPOs), has a modulation of 62 days in its X-ray amplitude.M101-X1: One of the brightest ULXs, with luminosities up to 1041 erg/s (1034 W). This ULX coincides with an optical source that has been interpreted to be a
supergiant [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2005ApJ...620L..31K&db_key=AST&data_type=HTML&format=&high=430088c71505412] , thus supporting the case that this may be anX-ray binary .NGC 1313 X1 and X2: These two sources had low temperature disk components, which is interpreted as possible evidence for the presence of anintermediate-mass black hole [http://arxiv.org/abs/astro-ph/0211178]
Wikimedia Foundation. 2010.