Milliken's tree theorem

Milliken's tree theorem

In mathematics, Milliken's tree theorem in combinatorics is a partition theorem generalizing Ramsey's theorem to infinite trees, objects with more structure than sets.

Let T be a finitely splitting rooted tree of height ω, n a positive integer, and \mathbb{S}^n_T the collection of all strongly embedded subtrees of T of height n. In one of its simple forms, Milliken's tree theorem states that if \mathbb{S}^n_T=C_1 \cup ... \cup C_r then for some strongly embedded infinite subtree R of T, \mathbb{S}^n_R \subset C_i for some i ≤ r.

This immediately implies Ramsey's theorem; take the tree T to be a linear ordering on ω vertices.

Define \mathbb{S}^n= \bigcup_T \mathbb{S}^n_T where T ranges over finitely splitting rooted trees of height ω. Milliken's tree theorem says that not only is \mathbb{S}^n partition regular for each n < ω, but that the homogeneous subtree R guaranteed by the theorem is strongly embedded in T.

Strong embedding

Call T an α-tree if each branch of T has cardinality α. Thus each α-tree has height α, but a tree with height α need not be an α-tree. Define Succ(p, P)=  \{ q \in P : q \geq p \}, and IS(p,P) to be the set of immediate successors of p in P. Suppose S is an α-tree and T is a β-tree, with 0 ≤ α ≤ β ≤ ω. S is strongly embedded in T if:

  • S \subset T, and the partial order on S is induced from T,
  • if s \in S is nonmaximal in S and t \in IS(s,T), then |Succ(t,T) \cap IS(s,S)|=1,
  • there exists a strictly increasing function from α to β, such that S(n) \subset T(f(n)).

Intuitively, for S to be strongly embedded in T,

  • S must be a subset of T with the induced partial order
  • S must preserve the branching structure of T; i.e., if a nonmaximal node in S has n immediate successors in T, then it has n immediate successors in S
  • S preserves the level structure of T; all nodes on a common level of S must be on a common level in T.

References

  1. Keith R. Milliken, A Ramsey Theorem for Trees J. Comb. Theory (Series A) 26 (1979), 215-237
  2. Keith R. Milliken, A Partition Theorem for the Infinite Subtrees of a Tree, Trans. Amer. Math. Soc. 263 No.1 (1981), 137-148.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Halpern-Lauchli theorem — In mathematics, the Halpern Läuchli theorem is a partition result about finite products of infinite trees. Its original purpose was to give a model for set theory in which the Boolean prime ideal theorem is true but the axiom of choice is false.… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”