Yoneda lemma

Yoneda lemma

In mathematics, specifically in category theory, the Yoneda lemma is an abstract result on functors of the type "morphisms into a fixed object". It is a vast generalisation of Cayley's theorem from group theory (a group being a particular kind of category with just one object). It allows the embedding of any category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

Generalities

The Yoneda lemma suggests that instead of studying the (small) category "C", one should study the category of all functors of "C" into Set (the category of sets with functions as morphisms). Set is a category we understand well, and a functor of "C" into Set can be seen as a "representation" of "C" in terms of known structures. The original category "C" is contained in this functor category, but new objects appear in the functor category which were absent and "hidden" in "C". Treating these new objects just like the old ones often unifies and simplifies the theory.

This approach is akin to (and in fact generalizes) the common method of studying a ring by investigating the modules over that ring. The ring takes the place of the category "C", and the category of modules over the ring is a category of functors defined on "C".

Formal statement

General version

Yoneda's lemma concerns functors from a fixed category "C" to the category of sets, Set. If "C" is a locally small category (i.e. the hom-sets are actual sets and not proper classes), then each object "A" of "C" gives rise to a natural functor to Set called a hom-functor. This functor is denoted::h_A = operatorname{Hom}(A,-),The hom-functor "h""A" sends "X" to the set of morphisms Hom("A","X").

Let "F" be an arbitrary functor from "C" to Set. Then Yoneda's lemma says that for each object "A" of "C" the natural transformations from "h""A" to "F" are in one-to-one correspondence with the elements of "F"("A"). That is,:mathrm{Nat}(h_A,F) cong F(A).Given a natural transformation Φ from "h""A" to "F", the corresponding element of "F"("A") is u = Phi_A(mathrm{id}_A).

There is a contravariant version of Yoneda's lemma which concerns contravariant functors from "C" to Set. This version involves the contravariant hom-functor:h'_A = mathrm{Hom}(-,A),which sends "X" to the hom-set Hom("X","A"). Given an arbitrary contravariant functor "G" from "C" to Set, Yoneda's lemma asserts that:mathrm{Nat}(h'_A,G) cong G(A).

Proof

The proof of Yoneda's lemma is indicated by the following commutative diagram:

This diagram shows that the natural transformation Φ is completely determined by Phi_A(mathrm{id}_A)=u since for each morphism "f" : "A" → "X" one has:Phi_X(f) = (Ff)u.,Moreover, any element "u"∈"F"("A") defines a natural transformation in this way. The proof in the contravariant case is completely analogous.

In this way, Yoneda's Lemma provides a complete classification of all natural transformations from the functor Hom(A,-) to an arbitrary functor F:C→Set.

The Yoneda embedding

An important special case of Yoneda's lemma is when the functor "F" from "C" to Set is another hom-functor "h""B". In this case, the covariant version of Yoneda's lemma states that:mathrm{Nat}(h_A,h_B) cong mathrm{Hom}(B,A).

That is, natural transformations between hom-functors are in one-to-one correspondence with morphisms (in the reverse direction) between the associated objects. Given a morphism "f" : "B" → "A" the associated natural transformation is denoted Hom("f",–).

Mapping each object "A" in "C" to its associated hom-functor "h""A" = Hom("A",–) and each morphism "f" : "B" → "A" to the corresponding natural transformation Hom("f",–) determines a contravariant functor "h" from "C" to Set"C", the functor category of all (covariant) functors from "C" to Set. One can interpret "h" as a covariant functor::hcolon mathcal C^{ ext{op o mathbf{Set}^mathcal C.The meaning of Yoneda's lemma in this setting is that the functor "h" is fully faithful, and therefore gives an embedding of "C"op in the category of functors to Set. The collection of all functors {"h"A, A in C} is a subcategory of Set"C". Therefore, Yoneda embedding implies that the category C"op" is isomorphic to the category {"h"A, A in C}.

The contravariant version of Yoneda's lemma states that:mathrm{Nat}(h'_A,h'_B) cong mathrm{Hom}(A,B).Therefore, "h"′ gives rise to a covariant functor from "C" to the category of contravariant functors to Set::h'colon mathcal C o mathbf{Set}^{mathcal C^{mathrm{op}.Yoneda's lemma then states that any locally small category "C" can be embedded in the category of contravariant functors from "C" to Set via "h"′. This is called the "Yoneda embedding".

Preadditive categories, rings and modules

A "preadditive category" is a category where the morphism sets form abelian groups and the composition of morphisms is bilinear; examples are categories of abelian groups or modules. In a preadditive category, there is both a "multiplication" and an "addition" of morphisms, which is why preadditive categories are viewed as generalizations of rings. Rings are preadditive categories with one object.

The Yoneda lemma remains true for preadditive categories if we choose as our extension the category of "additive" contravariant functors from the original category into the category of abelian groups; these are functors which are compatible with the addition of morphisms and should be thought of as forming a "module category" over the original category. The Yoneda lemma then yields the natural procedure to enlarge a preadditive category so that the enlarged version remains preadditive — in fact, the enlarged version is an abelian category, a much more powerful condition. In the case of a ring "R", the extended category is the category of all left modules over "R", and the statement of the Yoneda lemma reduces to the well-known isomorphism:"M" ≅ Hom"R"("R","M") for all left modules "M" over "R".


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Yoneda-Lemma — Das Yoneda Lemma, nach Nobuo Yoneda, ist eine mathematische Aussage aus dem Teilgebiet der Kategorientheorie. Es beschreibt die Menge der natürlichen Transformationen zwischen einem Hom Funktor und einem weiteren Funktor. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Yoneda lemma — noun Given a category C with an object A, let H be a representable functor from C to the category of Sets, and let F be any functor from C to Sets, then there is a natural isomorphism between the set F(A) and Nat(H,F), the set of natural… …   Wiktionary

  • Yoneda — is a Japanese surname which may refer to:*Isao Yoneda, gymnast * Nobuo Yoneda, mathematician and computer scientist ** The Yoneda lemma, a technical result in category theory, named after him *Tetsuya Yoneda, baseball pitcher …   Wikipedia

  • Lemma von Yoneda — Das Lemma von Yoneda, nach Nobuo Yoneda, ist eine mathematische Aussage aus dem Teilgebiet der Kategorientheorie. Es beschreibt die Menge der natürlichen Transformationen zwischen einem Hom Funktor und einem weiteren Funktor. Das Yoneda Lemma… …   Deutsch Wikipedia

  • Nobuo Yoneda — (jap. 米田 信夫, Yoneda Nobuo; * 28. März 1930; † 22. April 1996) war ein japanischer Mathematiker und Informatiker. Leben Nachdem Yoneda 1952 seinen Abschluss am mathematischen Institut der naturwissenschaftlichen Fakultät der Universität Tokio… …   Deutsch Wikipedia

  • Nobuo Yoneda — (米田 信夫, Yoneda Nobuo?, March 28, 1930 – April 22, 1996) was a Japanese mathematician and computer scientist. The Yoneda lemma in category theory is named after him. In computer science, he is known for his work on ALGOL dialects. References Eiiti …   Wikipedia

  • Abstract nonsense — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der sich Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelte; Saunders MacLane nennt seine 1945 gemeinsam mit Samuel Eilenberg entstandene „General… …   Deutsch Wikipedia

  • Duale Kategorie — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der sich Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelte; Saunders MacLane nennt seine 1945 gemeinsam mit Samuel Eilenberg entstandene „General… …   Deutsch Wikipedia

  • Funktor (Mathematik) — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der sich Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelte; Saunders MacLane nennt seine 1945 gemeinsam mit Samuel Eilenberg entstandene „General… …   Deutsch Wikipedia

  • Kategorientheorie — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelt wurde; Saunders MacLane nennt seine 1945 in Zusammenarbeit mit Samuel Eilenberg entstandene… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”