- Borsuk–Ulam theorem
The Borsuk–Ulam theorem states that any
continuous function from an "n"-sphere into Euclidean "n"-space maps some pair ofantipodal point s to the same point.(Two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center.)The case "n" = 2 is often illustrated by saying that at any moment there is always a pair of antipodal points on the
Earth 's surface with equal temperatures and equal barometric pressures. This assumes that temperature and barometric pressure vary continuously.The Borsuk–Ulam theorem was first conjectured by Stanisław Ulam. It was proved by
Karol Borsuk in 1933.There is an elementary proof that the Borsuk–Ulam theorem implies the
Brouwer fixed point theorem .A stronger statement related to Borsuk–Ulam theorem is that every antipode-preserving map
:
has odd degree.
Corollaries of Borsuk-Ulam theorem
* No subset of R"n" is
homeomorphic to S"n".
* If thesphere S"n" is covered by "n" + 1 open sets, then one of these sets contains a pair ("x", −"x") of antipodal points.
* TheHam sandwich theorem (stating that for anycompact sets in R"n" we can always find a hyperplane dividing each of them into two subsets of equal measure).ee also
*
Brouwer fixed point theorem
*Sperner's lemma
*Tucker's lemma
*Topological combinatorics References
* K. Borsuk, "Drei Sätze über die "n"-dimensionale euklidische Sphäre", "Fund. Math.", 20 (1933), 177-190.
* Jiří Matoušek, "Using the Borsuk–Ulam theorem", Springer Verlag, Berlin, 2003. ISBN 3-540-00362-2.
* L. Lyusternik and S. Shnirel'man, "Topological Methods in Variational Problems". "Issledowatelskii Institut Matematiki i Mechaniki pri O. M. G. U.", Moscow, 1930.
* [http://www.math.hmc.edu/~su/papers.dir/borsuk.pdf Borsuk-Ulam theorem implies the Brouwer fixed point theorem]
* [http://www.math.cornell.edu/~hatcher/AT/ATpage.html Allen Hatcher: Algebraic Topology (free download)]
Wikimedia Foundation. 2010.