Computer network

Computer network
Internet map. The Internet is a global system of interconnected computer networks that use the standard Internet Protocol Suite (TCP/IP) to serve billions of users worldwide.
Distributed processing

A computer network, often simply referred to as a network, is a collection of hardware components and computers interconnected by communication channels that allow sharing of resources and information.[1]

Networks may be classified according to a wide variety of characteristics such as the medium used to transport the data, communications protocol used, scale, topology, and organizational scope.

The rules and data formats for exchanging information in a computer network are defined by communications protocols. Well-known communications protocols are Ethernet, a hardware and Link Layer standard that is ubiquitous in local area networks, and the Internet Protocol Suite, which defines a set of protocols for internetworking, i.e. for data communication between multiple networks, as well as host-to-host data transfer, and application-specific data transmission formats.

Computer networking is sometimes considered a sub-discipline of electrical engineering, telecommunications, computer science, information technology or computer engineering, since it relies upon the theoretical and practical application of these disciplines.

Contents

History

Before the advent of computer networks that were based upon some type of telecommunications system, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behaviors seen in today's Internet were demonstrably present in the 19th century and arguably in even earlier networks using visual signals.

  • In September 1940, George Stibitz used a Teletype machine to send instructions for a problem set from his Model at Dartmouth College to his Complex Number Calculator in New York and received results back by the same means. Linking output systems like teletypewriters to computers was an interest at the Advanced Research Projects Agency (ARPA) when, in 1962, J.C.R. Licklider was hired and developed a working group he called the "Intergalactic Network", a precursor to the ARPANET.
  • Early networks of communicating computers included the military radar system Semi-Automatic Ground Environment (SAGE), started in the late 1950s
  • The commercial airline reservation system semi-automatic business research environment (SABRE) which went online with two connected mainframes in 1960.[2][3]
  • In 1964, researchers at Dartmouth developed the Dartmouth Time Sharing System for distributed users of large computer systems. The same year, at Massachusetts Institute of Technology, a research group supported by General Electric and Bell Labs used a computer to route and manage telephone connections.
  • Throughout the 1960s Leonard Kleinrock, Paul Baran and Donald Davies independently conceptualized and developed network systems which used packets that could be used in a network between computer systems.
  • 1965 Thomas Merrill and Lawrence G. Roberts created the first wide area network (WAN).
  • The first widely used telephone switch that used true computer control was introduced by Western Electric in 1965.
  • In 1969 the University of California at Los Angeles, the Stanford Research Institute, University of California at Santa Barbara, and the University of Utah were connected as the beginning of the ARPANET network using 50 kbit/s circuits.[4]
  • Commercial services using X.25 were deployed in 1972, and later used as an underlying infrastructure for expanding TCP/IP networks.

Today, computer networks are the core of modern communication. All modern aspects of the public switched telephone network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade, and this boom in communications would not have been possible without the progressively advancing computer network. Computer networks, and the technologies needed to connect and communicate through and between them, continue to drive computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.

Properties

Computer networks:

Facilitate communications 
Using a network, people can communicate efficiently and easily via email, instant messaging, chat rooms, telephone, video telephone calls, and video conferencing.
Permit sharing of files, data, and other types of information
In a network environment, authorized users may access data and information stored on other computers on the network. The capability of providing access to data and information on shared storage devices is an important feature of many networks.
Share network and computing resources
In a networked environment, each computer on a network may access and use resources provided by devices on the network, such as printing a document on a shared network printer. Distributed computing uses computing resources across a network to accomplish tasks.
May be insecure
A computer network may be used by computer hackers to deploy computer viruses or computer worms on devices connected to the network, or to prevent these devices from normally accessing the network (denial of service).
May interfere with other technologies
Power line communication strongly disturbs certain forms of radio communication, e.g., amateur radio.[5] It may also interfere with last mile access technologies such as ADSL and VDSL.[6]
May be difficult to set up
A complex computer network may be difficult to set up. It may also be very costly to set up an effective computer network in a large organization or company.

Communication media

Computer networks can be classified according to the hardware and associated software technology that is used to interconnect the individual devices in the network, such as electrical cable (HomePNA, power line communication, G.hn), optical fiber, and radio waves (wireless LAN). In the OSI model, these are located at levels 1 and 2.

A well-known family of communication media is collectively known as Ethernet. It is defined by IEEE 802 and utilizes various standards and media that enable communication between devices. Wireless LAN technology is designed to connect devices without wiring. These devices use radio waves or infrared signals as a transmission medium.

Wired technologies

  • Twisted pair wire is the most widely used medium for telecommunication. Twisted-pair cabling consist of copper wires that are twisted into pairs. Ordinary telephone wires consist of two insulated copper wires twisted into pairs. Computer networking cabling (wired Ethernet as defined by IEEE 802.3) consists of 4 pairs of copper cabling that can be utilized for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 10 billion bits per second. Twisted pair cabling comes in two forms which are Unshielded Twisted Pair (UTP) and Shielded twisted-pair (STP) which are rated in categories which are manufactured in different increments for various scenario.
  • Coaxial cable is widely used for cable television systems, office buildings, and other work-sites for local area networks. The cables consist of copper or aluminum wire wrapped with insulating layer typically of a flexible material with a high dielectric constant, all of which are surrounded by a conductive layer. The layers of insulation help minimize interference and distortion. Transmission speed range from 200 million to more than 500 million bits per second.
  • Optical fiber cable consists of one or more filaments of glass fiber wrapped in protective layers that carries data by means of pulses of light. It transmits light which can travel over extended distances. Fiber-optic cables are not affected by electromagnetic radiation. Transmission speed may reach trillions of bits per second. The transmission speed of fiber optics is hundreds of times faster than for coaxial cables and thousands of times faster than a twisted-pair wire. This capacity may be further increased by the use of colored light, i.e., light of multiple wavelengths. Instead of carrying one message in a stream of monochromatic light impulses, this technology can carry multiple signals in a single fiber.

Wireless technologies

  • Terrestrial microwave – Terrestrial microwaves use Earth-based transmitter and receiver. The equipment looks similar to satellite dishes. Terrestrial microwaves use low-gigahertz range, which limits all communications to line-of-sight. Path between relay stations spaced approx, 48 km (30 mi) apart. Microwave antennas are usually placed on top of buildings, towers, hills, and mountain peaks.
  • Communications satellites – The satellites use microwave radio as their telecommunications medium which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically 35,400 km (22,000 mi) (for geosynchronous satellites) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.
  • Cellular and PCS systems – Use several radio communications technologies. The systems are divided to different geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.
  • Wireless LANs – Wireless local area network use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. An example of open-standards wireless radio-wave technology is IEEE 802.11.
  • Infrared communication can transmit signals between devices within small distances of typically no more than 10 meters. In most cases, line-of-sight propagation is used, which limits the physical positioning of communicating devices.
  • A global area network (GAN) is a network used for supporting mobile across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is handing off the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial wireless LANs.[7]

Exotic technologies

There have been various attempts at transporting data over more or less exotic media:

  • Extending the Internet to interplanetary dimensions via radio waves.[9]

A practical limit in both cases is the round-trip delay time which constrains useful communication.

Communications protocol

A communications protocol defines the formats and rules for exchanging information via a network and typically comprises a complete protocol suite which describes the protocols used at various usage levels. An interesting feature of communications protocols is that they may be – and in fact very often are – stacked above each other, which means that one is used to carry the other. The example for this is HTTP running over TCP over IP over IEEE 802.11, where the second and third are members of the Internet Protocol Suite, while the last is a member of the Ethernet protocol suite. This is the stacking which exists between the wireless router and the home user's personal computer when surfing the World Wide Web.

Communication protocols have themselves various properties, such as whether they are connection-oriented versus connectionless, whether they use circuit mode or packet switching, or whether they use hierarchical or flat addressing.

There exist a multitude of communication protocols, a few of which are described below.

Ethernet

Ethernet is a family of connectionless protocols used in LANs, described by a set of standards together called IEEE 802 published by the Institute of Electrical and Electronics Engineers. It has a flat addressing scheme and is mostly situated at levels 1 and 2 of the OSI model. For home users today, the most well-known member of this protocol family is IEEE 802.11, otherwise known as Wireless LAN (WLAN). However, the complete protocol suite deals with a multitude of networking aspects not only for home use, but especially when the technology is deployed to support a diverse range of business needs. MAC bridging (IEEE 802.1D) deals with the routing of Ethernet packets using a Spanning Tree Protocol, IEEE 802.1Q describes VLANs, and IEEE 802.1X defines a port-based Network Access Control protocol which forms the basis for the authentication mechanisms used in VLANs, but also found in WLANs – it is what the home user sees when they have to enter a "wireless access key".

Internet Protocol Suite

The Internet Protocol Suite, often also called TCP/IP, is the foundation of all modern internetworking. It offers connection-less as well as connection-oriented services over an inherently unreliable network traversed by datagram transmission at the Internet protocol (IP) level. At its core, the protocol suite defines the addressing, identification, and routing specification in form of the traditional Internet Protocol Version 4 (IPv4) and IPv6, the next generation of the protocol with a much enlarged addressing capability.

SONET/SDH

Synchronous Optical NETworking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized multiplexing protocols that transfer multiple digital bit streams over optical fiber using lasers. They were originally designed to transport circuit mode communications from a variety of different sources, primarily to support real-time, uncompressed, circuit-switched voice encoded in PCM format. However, due to its protocol neutrality and transport-oriented features, SONET/SDH also was the obvious choice for transporting Asynchronous Transfer Mode (ATM) frames.

Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) is a switching technique for telecommunication networks. It uses asynchronous time-division multiplexing and encodes data into small, fixed-sized cells. This differs from other protocols such as the Internet Protocol Suite or Ethernet that use variable sized packets or frames. ATM has similarity with both circuit and packet switched networking. This makes it a good choice for a network that must handle both traditional high-throughput data traffic, and real-time, low-latency content such as voice and video. ATM uses a connection-oriented model in which a virtual circuit must be established between two endpoints before the actual data exchange begins.

While the role of ATM is diminishing in favor of next-generation networks, it still plays a role in the last mile, which is the connection between an Internet service provider and the home user. For an interesting write-up of the technologies involved, including the deep stacking of communications protocols used, see.[10]

Scale

Computer network types by geographical scope
This box: view · talk · edit

Networks are often classified by their physical or organizational extent or their purpose. Usage, trust level, and access rights differ between these types of networks.

Personal area network

A personal area network (PAN) is a computer network used for communication among computer and different information technological devices close to one person. Some examples of devices that are used in a PAN are personal computers, printers, fax machines, telephones, PDAs, scanners, and even video game consoles. A PAN may include wired and wireless devices. The reach of a PAN typically extends to 10 meters.[11] A wired PAN is usually constructed with USB and Firewire connections while technologies such as Bluetooth and infrared communication typically form a wireless PAN.

Local area network

A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as home, school, computer laboratory, office building, or closely positioned group of buildings. Each computer or device on the network is a node. Current wired LANs are most likely to be based on Ethernet technology, although new standards like ITU-T G.hn also provide a way to create a wired LAN using existing home wires (coaxial cables, phone lines and power lines).[12]

Typical library network, in a branching tree topology and controlled access to resources

All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.

The defining characteristics of LANs, in contrast to WANs (Wide Area Networks), include their higher data transfer rates, smaller geographic range, and no need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 40 and 100 Gbit/s.[13] LANs can be connected to Wide area network by using routers.

Home network

A home network is a residential LAN which is used for communication between digital devices typically deployed in the home, usually a small number of personal computers and accessories, such as printers and mobile computing devices. An important function is the sharing of Internet access, often a broadband service through a cable TV or Digital Subscriber Line (DSL) provider.

Storage area network

A storage area network (SAN) is a dedicated network that provides access to consolidated, block level data storage. SANs are primarily used to make storage devices, such as disk arrays, tape libraries, and optical jukeboxes, accessible to servers so that the devices appear like locally attached devices to the operating system. A SAN typically has its own network of storage devices that are generally not accessible through the local area network by other devices. The cost and complexity of SANs dropped in the early 2000s to levels allowing wider adoption across both enterprise and small to medium sized business environments.

Campus network

A campus network is a computer network made up of an interconnection of LANs within a limited geographical area. The networking equipment (switches, routers) and transmission media (optical fiber, copper plant, Cat5 cabling etc.) are almost entirely owned (by the campus tenant / owner: an enterprise, university, government etc.).

In the case of a university campus-based campus network, the network is likely to link a variety of campus buildings including, for example, academic colleges or departments, the university library, and student residence halls.

Backbone network

A backbone network is part of a computer network infrastructure that interconnects various pieces of network, providing a path for the exchange of information between different LANs or subnetworks. A backbone can tie together diverse networks in the same building, in different buildings in a campus environment, or over wide areas. Normally, the backbone's capacity is greater than that of the networks connected to it.

A large corporation which has many locations may have a backbone network that ties all of these locations together, for example, if a server cluster needs to be accessed by different departments of a company which are located at different geographical locations. The equipment which ties these departments together constitute the network backbone. Network performance management including network congestion are critical parameters taken into account when designing a network backbone.

A specific case of a backbone network is the Internet backbone, which is the set of wide-area network connections and core routers that interconnect all networks connected to the Internet.

Metropolitan area network

A Metropolitan area network (MAN) is a large computer network that usually spans a city or a large campus.

Sample EPN made of Frame relay WAN connections and dialup remote access.
Sample VPN used to interconnect 3 offices and remote users

Wide area network

A wide area network (WAN) is a computer network that covers a large geographic area such as a city, country, or spans even intercontinental distances, using a communications channel that combines many types of media such as telephone lines, cables, and air waves. A WAN often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

Enterprise private network

An enterprise private network is a network built by an enterprise to interconnect various company sites, e.g., production sites, head offices, remote offices, shops, in order to share computer resources.

Virtual private network

A virtual private network (VPN) is a computer network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The data link layer protocols of the virtual network are said to be tunneled through the larger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.

VPN may have best-effort performance, or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.

Internetwork

An internetwork is the connection of multiple computer networks via a common routing technology using routers. The Internet is an aggregation of many connected internetworks spanning the Earth.

Organizational scope

Networks are typically managed by organizations which own them. According to the owner's point of view, networks are seen as intranets or extranets. A special case of network is the Internet, which has no single owner but a distinct status when seen by an organizational entity – that of permitting virtually unlimited global connectivity for a great multitude of purposes.

Intranets and extranets

Intranets and extranets are parts or extensions of a computer network, usually a LAN.

An intranet is a set of networks, using the Internet Protocol and IP-based tools such as web browsers and file transfer applications, that is under the control of a single administrative entity. That administrative entity closes the intranet to all but specific, authorized users. Most commonly, an intranet is the internal network of an organization. A large intranet will typically have at least one web server to provide users with organizational information.

An extranet is a network that is limited in scope to a single organization or entity and also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities—a company's customers may be given access to some part of its intranet—while at the same time the customers may not be considered trusted from a security standpoint. Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although an extranet cannot consist of a single LAN; it must have at least one connection with an external network.

Internet

The Internet is a global system of interconnected governmental, academic, corporate, public, and private computer networks. It is based on the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research Projects Agency Network (ARPANET) developed by DARPA of the United States Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW).

Participants in the Internet use a diverse array of methods of several hundred documented, and often standardized, protocols compatible with the Internet Protocol Suite and an addressing system (IP addresses) administered by the Internet Assigned Numbers Authority and address registries. Service providers and large enterprises exchange information about the reachability of their address spaces through the Border Gateway Protocol (BGP), forming a redundant worldwide mesh of transmission paths.

Network topology

Common layouts

A network topology is the layout of the interconnections of the nodes of a computer network. Common layouts are:

  • A bus network: all nodes are connected to a common medium along this medium. This was the layout used in the original Ethernet, called 10BASE5 and 10BASE2.
  • A star network: all nodes are connected to a special central node. This is the typical layout found in in a Wireless LAN, where each wireless client connects to the central Wireless access point.
  • A ring network: each node is connected to its left and right neighbor node, such that all nodes are connected and that each node can reach each other node by traversing nodes left- or rightwards. The Fiber Distributed Data Interface (FDDI) made use of such a topology.
  • A mesh network: each node is connected to an arbitrary number of neighbors in such a way that there is at least one traversal from any node to any other.
  • A fully connected network: each node is connected to every other node in the network.

Note that the physical layout of the nodes in a network may not necessarily reflect the network topology. As an example, with FDDI, the network topology is a ring (actually two counter-rotating rings), but the physical topology is a star, because all neighboring connections are routed via a central physical location.

Overlay network

An overlay network is a virtual computer network that is built on top of another network. Nodes in the overlay are connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network. The topology of the overlay network may (and often does) differ from that of the underlying one.

A sample overlay network: IP over SONET over Optical

For example, many peer-to-peer networks are overlay networks because they are organized as nodes of a virtual system of links run on top of the Internet. The Internet was initially built as an overlay on the telephone network .[14]

The most striking example of an overlay network, however, is the Internet itself: At the IP layer, each node can reach any other by a direct connection to the desired IP address, thereby creating a fully connected network; the underlying network, however, is composed of a mesh-like interconnect of subnetworks of varying topologies (and, in fact, technologies). Address resolution and routing are the means which allows the mapping of the fully connected IP overlay network to the underlying ones.

Overlay networks have been around since the invention of networking when computer systems were connected over telephone lines using modems, before any data network existed.

Another example of an overlay network is a distributed hash table, which maps keys to nodes in the network. In this case, the underlying network is an IP network, and the overlay network is a table (actually a map) indexed by keys.

Overlay networks have also been proposed as a way to improve Internet routing, such as through quality of service guarantees to achieve higher-quality streaming media. Previous proposals such as IntServ, DiffServ, and IP Multicast have not seen wide acceptance largely because they require modification of all routers in the network.[citation needed] On the other hand, an overlay network can be incrementally deployed on end-hosts running the overlay protocol software, without cooperation from Internet service providers. The overlay has no control over how packets are routed in the underlying network between two overlay nodes, but it can control, for example, the sequence of overlay nodes a message traverses before reaching its destination.

For example, Akamai Technologies manages an overlay network that provides reliable, efficient content delivery (a kind of multicast). Academic research includes end system multicast and overcast for multicast; RON (resilient overlay network) for resilient routing; and OverQoS for quality of service guarantees, among others.

Basic hardware components

Apart from the physical communications media themselves as described above, networks comprise additional basic hardware building blocks interconnecting their terminals, such as network interface cards (NICs), hubs, bridges, switches, and routers.

Network interface cards

A network card, network adapter, or NIC (network interface card) is a piece of computer hardware designed to allow computers to physically access a networking medium. It provides a low-level addressing system through the use of MAC addresses.

Each Ethernet network interface has a unique MAC address which is usually stored in a small memory device on the card, allowing any device to connect to the network without creating an address conflict. Ethernet MAC addresses are composed of six octets. Uniqueness is maintained by the IEEE, which manages the Ethernet address space by assigning 3-octet prefixes to equipment manufacturers. The list of prefixes is publicly available. Each manufacturer is then obliged to both use only their assigned prefix(es) and to uniquely set the 3-octet suffix of every Ethernet interface they produce.

Repeaters and hubs

A repeater is an electronic device that receives a signal, cleans it of unnecessary noise, regenerates it, and retransmits it at a higher power level, or to the other side of an obstruction, so that the signal can cover longer distances without degradation. In most twisted pair Ethernet configurations, repeaters are required for cable that runs longer than 100 meters. A repeater with multiple ports is known as a hub. Repeaters work on the Physical Layer of the OSI model. Repeaters require a small amount of time to regenerate the signal. This can cause a propagation delay which can affect network communication when there are several repeaters in a row. Many network architectures limit the number of repeaters that can be used in a row (e.g. Ethernet's 5-4-3 rule).

Today, repeaters and hubs have been made mostly obsolete by switches (see below).

Bridges

A network bridge connects multiple network segments at the data link layer (layer 2) of the OSI model. Bridges broadcast to all ports except the port on which the broadcast was received. However, bridges do not promiscuously copy traffic to all ports, as hubs do, but learn which MAC addresses are reachable through specific ports. Once the bridge associates a port and an address, it will send traffic for that address to that port only.

Bridges learn the association of ports and addresses by examining the source address of frames that it sees on various ports. Once a frame arrives through a port, its source address is stored and the bridge assumes that MAC address is associated with that port. The first time that a previously unknown destination address is seen, the bridge will forward the frame to all ports other than the one on which the frame arrived.

Bridges come in three basic types:

  • Local bridges: Directly connect LANs
  • Remote bridges: Can be used to create a wide area network (WAN) link between LANs. Remote bridges, where the connecting link is slower than the end networks, largely have been replaced with routers.
  • Wireless bridges: Can be used to join LANs or connect remote stations to LANs.

Switches

A network switch is a device that forwards and filters OSI layer 2 datagrams (chunks of data communication) between ports (connected cables) based on the MAC addresses in the packets.[15] A switch is distinct from a hub in that it only forwards the frames to the ports involved in the communication rather than all ports connected. A switch breaks the collision domain but represents itself as a broadcast domain. Switches make forwarding decisions of frames on the basis of MAC addresses. A switch normally has numerous ports, facilitating a star topology for devices, and cascading additional switches.[16] Some switches are capable of routing based on Layer 3 addressing or additional logical levels; these are called multi-layer switches. The term switch is used loosely in marketing to encompass devices including routers and bridges, as well as devices that may distribute traffic on load or by application content (e.g., a Web URL identifier).

Routers

A router is an internetworking device that forwards packets between networks by processing information found in the datagram or packet (Internet protocol information from Layer 3 of the OSI Model). In many situations, this information is processed in conjunction with the routing table (also known as forwarding table). Routers use routing tables to determine what interface to forward packets (this can include the "null" also known as the "black hole" interface because data can go into it, however, no further processing is done for said data).

Firewalls

A firewall is an important aspect of a network with respect to security. It typically rejects access requests from unsafe sources while allowing actions from recognized ones. The vital role firewalls play in network security grows in parallel with the constant increase in 'cyber' attacks for the purpose of stealing/corrupting data, planting viruses, etc.

Network performance

Network performance refers to the service quality of a telecommunications product as seen by the customer. It should not be seen merely as an attempt to get "more through" the network.

The following list gives examples of Network Performance measures for a circuit-switched network and one type of packet-switched network, viz. ATM:

  • Circuit-switched networks: In circuit switched networks, network performance is synonymous with the grade of service. The number of rejected calls is a measure of how well the network is performing under heavy traffic loads.[17] Other types of performance measures can include noise, echo and so on.

There are many different ways to measure the performance of a network, as each network is different in nature and design. Performance can also be modelled instead of measured; one example of this is using state transition diagrams to model queuing performance in a circuit-switched network. These diagrams allow the network planner to analyze how the network will perform in each state, ensuring that the network will be optimally designed.[19]

Network security

In the field of networking, the area of network security[20] consists of the provisions and policies adopted by the network administrator to prevent and monitor unauthorized access, misuse, modification, or denial of the computer network and network-accessible resources. Network security is the authorization of access to data in a network, which is controlled by the network administrator. Users are assigned an ID and password that allows them access to information and programs within their authority. Network Security covers a variety of computer networks, both public and private that are used in everyday jobs conducting transactions and communications among businesses, government agencies and individuals.

Network resilience

In computer networking: “Resilience is the ability to provide and maintain an acceptable level of service in the face of faults and challenges to normal operation.”[21]

Views of networks

Users and network administrators typically have different views of their networks. Users can share printers and some servers from a workgroup, which usually means they are in the same geographic location and are on the same LAN, whereas a Network Administrator is responsible to keep that network up and running. A community of interest has less of a connection of being in a local area, and should be thought of as a set of arbitrarily located users who share a set of servers, and possibly also communicate via peer-to-peer technologies.

Network administrators can see networks from both physical and logical perspectives. The physical perspective involves geographic locations, physical cabling, and the network elements (e.g., routers, bridges and application layer gateways) that interconnect the physical media. Logical networks, called, in the TCP/IP architecture, subnets, map onto one or more physical media. For example, a common practice in a campus of buildings is to make a set of LAN cables in each building appear to be a common subnet, using virtual LAN (VLAN) technology.

Both users and administrators will be aware, to varying extents, of the trust and scope characteristics of a network. Again using TCP/IP architectural terminology, an intranet is a community of interest under private administration usually by an enterprise, and is only accessible by authorized users (e.g. employees).[22] Intranets do not have to be connected to the Internet, but generally have a limited connection. An extranet is an extension of an intranet that allows secure communications to users outside of the intranet (e.g. business partners, customers).[22]

Unofficially, the Internet is the set of users, enterprises, and content providers that are interconnected by Internet Service Providers (ISP). From an engineering viewpoint, the Internet is the set of subnets, and aggregates of subnets, which share the registered IP address space and exchange information about the reachability of those IP addresses using the Border Gateway Protocol. Typically, the human-readable names of servers are translated to IP addresses, transparently to users, via the directory function of the Domain Name System (DNS).

Over the Internet, there can be business-to-business (B2B), business-to-consumer (B2C) and consumer-to-consumer (C2C) communications. Especially when money or sensitive information is exchanged, the communications are apt to be secured by some form of communications security mechanism. Intranets and extranets can be securely superimposed onto the Internet, without any access by general Internet users and administrators, using secure Virtual Private Network (VPN) technology.

See also


References

  1. ^ Computer network definition
  2. ^ Michael A. Banks (2008). On the way to the web: the secret history of the internet and its founders. Apress. p. 1. ISBN 9781430208693. http://books.google.com/books?id=P9wbSjO9WMMC&pg=PA1. 
  3. ^ Christos J. P. Moschovitis (1998). History of the Internet: a chronology, 1843 to the present. ABC-CLIO. p. 36. ISBN 9781576071182. http://books.google.com/?id=Hu5SAAAAMAAJ&dq=intitle%3A%22history+of+the+internet%22+sage+sabre&q=sage+sabre%27s#search_anchor. 
  4. ^ Chris Sutton. "Internet Began 35 Years Ago at UCLA with First Message Ever Sent Between Two Computers". UCLA. Archived from the original on March 8, 2008. http://web.archive.org/web/20080308120314/http://www.engineer.ucla.edu/stories/2004/Internet35.htm. 
  5. ^ The National Association for Amateur Radio: Broadband Over Powerline
  6. ^ "The Likelihood and Extent of Radio Frequency Interference from In-Home PLT Devices". Ofcom. http://stakeholders.ofcom.org.uk/binaries/research/technology-research/pltreport.pdf. Retrieved 18 June 2011. 
  7. ^ Mobile Broadband Wireless connections (MBWA)
  8. ^ Bergen Linux User Group's CPIP Implementation
  9. ^ Interplanetary Internet, 2000 Third Annual International Symposium on Advanced Radio Technologies, A. Hooke, September 2000
  10. ^ Martin, Thomas. "Design Principles for DSL-Based Access Solutions". http://www.gsi.dit.upm.es/~legf/Varios/XDSL_MARTI.PDF. Retrieved 18 June 2011. 
  11. ^ "personal area network (PAN)". http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci546288,00.html. Retrieved January 29, 2011. 
  12. ^ New global standard for fully networked home, ITU-T Press Release
  13. ^ IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force
  14. ^ D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Resilient Overlay Networks. In Proc. ACM SOSP, Oct. 2001.
  15. ^ "Define switch.". www.webopedia.com. http://www.webopedia.com/TERM/s/switch.html. Retrieved April 8, 2008. 
  16. ^ "Basic Components of a Local Area Network (LAN)". NetworkBits.net. http://networkbits.net/lan-components/local-area-network-lan-basic-components/. Retrieved April 8, 2008. 
  17. ^ ITU-T Study Group 2, Teletraffic Engineering Handbook (PDF), Retrieved on February 13, 2005.
  18. ^ Telecommunications Magazine Online, Americas January 2003, Issue Highlights, Online Exclusive: Broadband Access Maximum Performance, Retrieved on February 13, 2005.
  19. ^ "State Transition Diagrams". http://cne.gmu.edu/modules/os_perf/std.t.html. Retrieved July 13, 2003. 
  20. ^ Simmonds, A; Sandilands, P; van Ekert, L (2004). "An Ontology for Network Security Attacks". Lecture Notes in Computer Science. Lecture Notes in Computer Science 3285: 317–323. doi:10.1007/978-3-540-30176-9_41. ISBN 978-3-540-23659-7. 
  21. ^ The ResiliNets Research Initiative definition of resilience.
  22. ^ a b RFC 2547

 This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".

Further reading

  • Shelly, Gary, et al. "Discovering Computers" 2003 Edition
  • Cisco Systems, Inc., (2003, March 14). CCNA: network media types. Retrieved from ciscopress.com
  • Wendell Odom,Rus Healy, Denise Donohue. (2010) CCIE Routing and Switching. Indianapolis, IN: Cisco Press
  • Kurose James F and Keith W. Ross : Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education 2005.
  • Andrew S. Tanenbaum, Computer Networks, Fourth Edition, Pearson Education 2006 (ISBN 0-13-349945-6).
  • William Stallings, Computer Networking with Internet Protocols and Technology, Pearson Education 2004.
  • Important publications in computer networks
  • Vinton G. Cerf "Software: Global Infrastructure for the 21st Century"
  • Meyers, Mike, "Mike Meyers' Certification Passport: Network+" ISBN 0072253487"
  • Odom, Wendall, "CCNA Certification Guide"
  • Network Communication Architecture and Protocols: OSI Network Architecture 7 Layers Model

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Computer Network —   [dt. Computernetz], Netzwerk …   Universal-Lexikon

  • computer network — kompiuterių tinklas statusas T sritis automatika atitikmenys: angl. computer network vok. Computernetz, n; Computernetzwerk, n; Rechnernetz, n; Rechnerverbund, m rus. вычислительная сеть, f; сеть вычислительных машин, f pranc. réseau d ordinateur …   Automatikos terminų žodynas

  • Computer Network Operations — (CNO) (dt. Computer Netzwerk Operationen) ist ein militärischer Begriff der mehrere Unterbegriffe umfasst. Inhaltsverzeichnis 1 Computer Network Attack 2 Computer Network Defense 3 Computer Network Exploitation …   Deutsch Wikipedia

  • Computer network operations — (CNO) is a broad term that has both military and civilian application. Conventional wisdom is that information is power, and more and more of the information necessary to make decisions is digitized and conveyed over an ever expanding network of… …   Wikipedia

  • Computer network diagram — A sample network diagram A computer network diagram is a schematic depicting the nodes and connections amongst nodes in a computer network or, more generally, any telecommunications network. Contents …   Wikipedia

  • Computer network programming — In computing, network programming, essentially identical to socket programming or client–server programming, involves writing computer programs that communicate with other programs across a computer network. The program or process initiating the… …   Wikipedia

  • computer network attack — Operations to disrupt, deny, degrade, or destroy information resident in computers and computer networks, or the computers and networks themselves. Electronic attack (EA) can be used against a computer, but it is not computer network attack (CNA) …   Military dictionary

  • computer network defense — Defensive measures to protect and defend information, computers, and networks from disruption, denial, degradation, or destruction. Also called CND. See also computer network attack …   Military dictionary

  • computer network engineer — kompiuterių tinklo inžinierius statusas T sritis profesijos apibrėžtis Inžinierius, atsakingas už kompiuterių tinklo planavimą, projektavimą, įrengimą, techninę priežiūrą ir remontą. atitikmenys: angl. computer network engineer pranc. ingénieur… …   Inžinieriai, technikai ir technologai. Trikalbis aiškinamasis žodynėlis

  • computer network — also called  Network,        two or more computers that are connected with one another for the purpose of communicating data electronically. Besides physically connecting computer and communication devices, a network system serves the important… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”