- Gene flow
In
population genetics , gene flow (also known as gene migration) is the transfer ofalleles ofgene s from onepopulation to another.Migration into or out of a population may be responsible for a marked change in
allele frequencies (the proportion of members carrying a particular variant of a gene). Immigration may also result in the addition of new genetic variants to the establishedgene pool of a particular species or population.There are a number of factors that affect the rate of gene flow between different populations. One of the most significant factors is mobility, as greater mobility of an individual tends to give it greater migratory potential. Animals tend to be more mobile than plants, although pollen and seeds may be carried great distances by animals or wind.
Maintained gene flow between two populations can also lead to a combination of the two gene pools, reducing the genetic variation between the two groups. It is for this reason that gene flow strongly acts against
speciation , by recombining the gene pools of the groups, and thus, repairing the developing differences in genetic variation that would have led to full speciation and creation of daughter species.Example:If a field of genetically modified corn is grown alongside a field of non-genetically modified corn, pollen from the former is likely to fertilize the latter.Fact|date=August 2008
Barrier to gene flow
Physical barriers to gene flow are usually, but not always, natural. They may include impassable mountain ranges, oceans, or vast deserts. In some cases, they can be artificial, man-made barriers, such as the
Great Wall of China , which has hindered the gene flow of native plant populations [Su, H et al. (2003) "The Great Wall of China: a physical barrier to gene flow?." Heredity, Volume 9 Pages 212-219] . Samples of the same species which grow on either side have been shown to have developed genetic differences, because there is no gene flow to provide recombination of the gene pools.Barriers to gene flow need not always to be physical. Species can live in the same environment, yet show very limited gene flow due to limited hybridization or hybridization yielding unfit hybrids.
Gene flow in humans
Gene flow has been observed in
humans . For example, in theUnited States , gene flow was observed between a white European population and a black West African population, which were recently brought together. In West Africa, wheremalaria is prevalent, theDuffy antigen provides some resistance to the disease, and this allele is thus present in nearly all of the West African population. In contrast, Europeans have either the allele Fya or Fyb, because malaria is almost non-existent. By measuring the frequencies of the West African and European groups, scientists found that the allele frequencies became mixed in each population because of movement of individuals. It was also found that this gene flow between European and West African groups is much greater in the Northern U.S. than in the South.Fact|date=March 2008Gene flow between species
Gene flow can occur between species, either through hybridization or gene transfer from bacteria or virus to new hosts.
Gene transfer , defined as the movement of genetic material across species boundaries, which includeshorizontal gene transfer ,antigenic shift , andreassortment is sometimes an important source of genetic variation. Viruses can transfer genes between species [http://66.102.7.104/search?q=cache:tpICVNWaTbgJ:non.fiction.org/lj/community/ref_courses/3484/enmicro.pdf+sex+evolution+%22Horizontal+gene+transfer%22+-human+Conjugation+RNA+DNA&hl=en] . Bacteria can incorporate genes from other dead bacteria, exchange genes with living bacteria, and can exchangeplasmid s across species boundaries [http://www2.nau.edu/~bah/BIO471/Reader/Pennisi_2003.pdf] . "Sequence comparisons suggest recent horizontal transfer of manygene s among diversespecies including across the boundaries ofphylogenetic "domains". Thus determining the phylogenetic history of a species can not be done conclusively by determining evolutionary trees for single genes." [http://opbs.okstate.edu/~melcher/MG/MGW3/MG334.html]Biologist Gogarten suggests "the original metaphor of a tree no longer fits the data from recent genome research". Biologists [should] instead use the metaphor of a mosaic to describe the different histories combined in individual genomes and use the metaphor of an intertwined net to visualize the rich exchange and cooperative effects of horizontal gene transfer. [http://www.esalenctr.org/display/confpage.cfm?confid=10&pageid=105&pgtype=1]
"Using single
gene s asphylogenetic marker s, it is difficult to trace organismalphylogeny in the presence of HGT [horizontal gene transfer] . Combining the simplecoalescence model ofcladogenesis with rare HGT [horizontal gene transfer] events suggest there was no singlelast common ancestor that contained all of the genes ancestral to those shared among the three domains oflife . Each contemporarymolecule has its own history and traces back to an individual moleculecenancestor . However, these molecular ancestors were likely to be present in different organisms at different times." [http://web.uconn.edu/gogarten/articles/TIG2004_cladogenesis_paper.pdf]Genetic pollution
Purebred, naturally-evolved, region-specific, wild
species can be threatened with extinction in a big way [ [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=33232 Hybridization and Introgression; Extinctions; from "The evolutionary impact of invasive species; by H. A. Mooney and E. E. Cleland" Proc Natl Acad Sci U S A. 2001 May 8; 98(10): 5446–5451. doi: 10.1073/pnas.091093398. Proc Natl Acad Sci U S A, v.98(10); May 8, 2001, The National Academy of Sciences] ] through the process ofgenetic pollution i.e. uncontrolledhybridization ,introgression and genetic swamping which leads to homogenization or replacement of localgenotypes as a result of either a numerical and/or fitness advantage of introduced plant or animal [ [http://www.nativeseednetwork.org/article_view?id=13 Glossary: definitions from the following publication: Aubry, C., R. Shoal and V. Erickson. 2005. Grass cultivars: their origins, development, and use on national forests and grasslands in the Pacific Northwest. USDA Forest Service. 44 pages, plus appendices.; Native Seed Network (NSN), Institute for Applied Ecology, 563 SW Jefferson Ave, Corvallis, OR 97333, USA] ] . Nonnative species can bring about a form of extinction of native plants and animals by hybridization and introgression either through purposeful introduction by humans or through habitat modification, bringing previously isolated species into contact. These phenomena can be especially detrimental for rare species coming into contact with more abundant ones where the abundant ones can interbreed with them swamping the entire rarer gene pool creating hybrids thus driving the entire original purebred native stock to complete extinction. Attention has to be focused on the extent of this under appreciated problem that is not always apparent from morphological (outward appearance) observations alone. Some degree ofgene flow may be a normal, evolutionarily constructive process, and all constellations ofgene s andgenotypes cannot be preserved however, hybridization with or without introgression may, nevertheless, threaten a rare species' existence [ [http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.27.1.83 EXTINCTION BY HYBRIDIZATION AND INTROGRESSION; by Judith M. Rhymer , Department of Wildlife Ecology, University of Maine, Orono, Maine 04469, USA; and Daniel Simberloff, Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA; Annual Review of Ecology and Systematics, November 1996, Vol. 27, Pages 83-109 (doi: 10.1146/annurev.ecolsys.27.1.83)] , [http://links.jstor.org/sici?sici=0066-4162(1996)27%3C83:EBHAI%3E2.0.CO;2-A#abstract] ] [ [http://www.rirdc.gov.au/reports/AFT/01-114.pdf Genetic Pollution from Farm Forestry using eucalypt species and hybrids; A report for the RIRDC/L&WA/FWPRDC; Joint Venture Agroforestry Program; by Brad M. Potts, Robert C. Barbour, Andrew B. Hingston; September 2001; RIRDC Publication No 01/114; RIRDC Project No CPF - 3A; ISBN 0 642 58336 6; ISSN 1440-6845; Australian Government, Rural Industrial Research and Development Corporation] ] .Models of gene flow
Models of gene flow can be derived from
population genetics , e.g.Sewall Wright 'sneighborhood model , Wright'sisland model and thestepping stone model .Gene flow mitigation
When cultivating genetically modified (GM) plants or
livestock , it becomes necessary to prevent "genetic pollution " i.e. their genetic modification from reaching other conventionally hybridized or wild native plant and animal populations by using gene flow mitigation usually through unintentionalcross pollination andcrossbreeding . Reasons to limit gene flow may includebiosafety or agricultural co-existence, in which GM and non-GM cropping systems work side by side.Scientists in several large research programmes are investigating methods of limiting gene flow in plants. Among these programmes are
Transcontainer , which investigates methods for biocontainment,SIGMEA , which focuses on the biosafety of genetically modified plants, andCo-Extra , which studies the co-existence of GM and non-GM product chains.Generally, there are three approaches to gene flow mitigation: keeping the genetic modification out of the pollen, preventing the formation of pollen, and keeping the pollen inside the flower.
* The first approach requires
transplastomic plants . In transplastomic plants, the modifiedDNA is not situated in the cell's nucleus but is present inplastid s, which are cellular compartments outside the nucleus. An example for plastids arechloroplast s, in whichphotosynthesis occurs. In some plants, thepollen does not contain plastids and, consequently, any modification located in plastids cannot be transmitted by the pollen.
* The second approach relies on male sterile plants. Male sterile plants are unable to produce functioning flowers and therefore cannot release viable pollen. Cytoplasmic male sterile plants are known to produce higher yields. Therefore, researchers are trying to introduce this trait to genetically modified crops.
* The third approach works by preventing the flowers from opening. This trait is calledcleistogamy and occurs naturally in some plants. Cleistogamous plants produce flowers which either open only partly or not at all. However, it remains unclear how reliable cleistogamy is for gene flow mitigation: a Co-Extra research project on rapeseed investigating the matter has published preliminary results which cast doubt on the attainment of a high degree of reliability.ee also
*
Biological dispersal
*Genetic pollution
*Genetic erosion External links
* [http://www.coextra.eu/research_themes/topics188.html Co-Extra research on gene flow mitigation]
* [http://www.transcontainer.org/UK Transcontainer research on biocontainment]
* [http://sigmea.dyndns.org SIGMEA research on the biosafety of GMOs: http://sigmea.dyndns.org]References
* Su, H et al. (2003) "The Great Wall of China: a physical barrier to gene flow?." Heredity, Volume 9 Pages 212-219
Wikimedia Foundation. 2010.