- Gödel's proof
Gödel's proof may refer to:
*Gödel's incompleteness theorems
*Gödel's ontological proof
Wikimedia Foundation. 2010.
Gödel's proof may refer to:
*
*
Wikimedia Foundation. 2010.
Gödel's theorem — n. either of two theorems published by the mathematician Kurt Gödel in 1931 that prove all mathematical systems are incomplete in that their truth or consistency can only be proved using a system of a higher order: also called Gödel s proof or… … Universalium
Gödel's theorem — n. either of two theorems published by the mathematician Kurt Gödel in 1931 that prove all mathematical systems are incomplete in that their truth or consistency can only be proved using a system of a higher order: also called Gödel s proof or… … English World dictionary
Gödel's incompleteness theorems — In mathematical logic, Gödel s incompleteness theorems, proved by Kurt Gödel in 1931, are two theorems stating inherent limitations of all but the most trivial formal systems for arithmetic of mathematical interest. The theorems are of… … Wikipedia
Proof of impossibility — A proof of impossibility, sometimes called a negative proof or negative result , is a proof demonstrating that a particular problem cannot be solved, or cannot be solved in general. Often proofs of impossibility have put to rest decades or… … Wikipedia
Gödel, Kurt — born April 28, 1906, Brünn, Austria Hungary died Jan. 14, 1978, Princeton, N.J., U.S. Austrian born U.S. mathematician and logician. He began his career on the faculty of the University of Vienna, where he produced his groundbreaking proof (see… … Universalium
Gödel number — In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well formed formula of some formal language a unique natural number called its Gödel number. The concept was first used by Kurt Gödel for the proof of his… … Wikipedia
Gödel's ontological proof — is a formalization of Saint Anselm s ontological argument for God s existence by the mathematician Kurt Gödel.St. Anselm s ontological argument, in its most succinct form, is as follows: God, by definition, is that than which a greater cannot be… … Wikipedia
Gödel's completeness theorem — is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first order logic. It was first proved by Kurt Gödel in 1929. A first order formula is called logically valid if… … Wikipedia
Proof theory — is a branch of mathematical logic that represents proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as plain lists, boxed… … Wikipedia
Proof sketch for Gödel's first incompleteness theorem — This article gives a sketch of a proof of Gödel s first incompleteness theorem. This theorem applies to any formal theory that satisfies certain technical hypotheses which are discussed as needed during the sketch. We will assume for the… … Wikipedia