- Antibonding
Antibonding (or anti-bonding) is a type of chemical bonding. An antibonding orbital is a form of
molecular orbital (MO) that is located outside the region of two distinct nuclei. The overlap of the constituentatomic orbitals is said to be 'out of phase' and as such theelectron s present in each antibonding orbital are repulsive and act to destabilize themolecule as a whole. (SeeElectron Phases )Antibonding molecular orbits (MOs) are normally "higher" in energy than bonding MOs. They are occupied by two electrons at a time and (in the case of
hydrogen ), eachatom can contribute only one electron, therefore only the "s" (bonding) MO is occupied and the H2 molecule is more stable than two separate H atoms.A molecular orbital becomes antibonding as there is actually less
electron density between the two nuclei than there would be if there was no bonding interaction at all. When an MO changes sign (from positive to negative) between two atoms, it is said to be "antibonding with respect to those atoms". Antibonding orbitals are often labelled with anasterisk (*) on molecular orbital diagrams.In molecules with several atoms, such as
benzene , a particular MO may be "bonding with respect to some adjacent pairs of atoms" and "antibonding with respect to other pairs". If the bonding interactions outnumber the antibonding interactions, the MO is said to be "bonding," while if the antibonding interactions outnumber the bonding interactions, the MO is said to be "antibonding". Since eachcarbon atom contributes only one electron to the π-system of benzene, there are six π-electrons and therefore only the three lowest-energy MOs (the bonding ones) are filled.Another particular feature of antibonding is that the "antibonding orbital is more antibonding than the bonding orbital is bonding". This leads to the conclusion that the energy of both MOs are raised by the presence of nucleus-nucleus repulsion.
Antibonding orbitals are also important for explaining
chemical reaction s in terms of molecular orbital theory. Roald Hoffmann andKenichi Fukui shared the1981 Nobel Prize in Chemistry for their work and further development ofqualitative MO explanations for chemical reactions.References
* Atkins, P.W. (2002). "Atkins Physical Chemistry". 7th ed. Oxford. ISBN 0-19-879285-9
* Orchin, M. Jaffe, H.H. (1967) "The Importance of Antibonding Orbitals". Houghton Mifflin. ISBN B0006BPT5O
* [http://nobelprize.org/chemistry/laureates/1981/ The 1981 Nobel Prize in Chemistry]
Wikimedia Foundation. 2010.