Stone–Weierstrass theorem
- Stone–Weierstrass theorem
In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on an interval ["a","b"] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are the simplest functions, and computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885.
Marshall H. Stone considerably generalized the theorem ::Let "A" be a closed subalgebra of the Banach space "C"("X",C) of continuous complex-valued functions on a compact Hausdorff space "X". Suppose that "f" ∈ "C"("X", C) has the following property::* "f"|"S" ∈ "A""S" for every maximal set "S" ⊂ "X" such that "A""S" contains no non-constant real functions.:Then "f" ∈ "A".
harvtxt|Glicksberg|1962 gives a short proof of Bishop's theorem using the Krein–Milman theorem in an essential way, as well as the Hahn–Banach theorem. See also harvtxt|Rudin|1973|loc=§5.7.
See also
* Runge's phenomenon shows that finding a polynomial P such that f(x)=P(x) for some finely spaced x=x_n is a bad way to attempt to find a polynomial approximating f uniformly. However, as is shown in Rudin's Principles of Mathematical Analysis, one can easily find a polynomial P uniformly approximating f by convolving f with a polynomial kernel.
References
*.
*.
*.
*.
*.
Historical works
The historical publication of Weierstrass (in German language) is freely available from the digital online archive of the " [http://bibliothek.bbaw.de/ Berlin Brandenburgische Akademie der Wissenschaften] ":
* K. Weierstrass (1885). Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen. "Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin", 1885 (II). : [http://bibliothek.bbaw.de/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=10-sitz/1885-2&seite:int=109 Erste Mitteilung] (part 1) pp. 633–639, [http://bibliothek.bbaw.de/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=10-sitz/1885-2&seite:int=272 Zweite Mitteilung] (part 2) pp. 789–805.
Important historical works of Stone include:
*.
*; 21 (5), 237–254.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Weierstrass theorem — Several theorems are named after Karl Weierstrass. These include: *The Weierstrass approximation theorem, also known as the Stone Weierstrauss theorem *The Bolzano Weierstrass theorem, which ensures compactness of closed and bounded sets in R n… … Wikipedia
Marshall Harvey Stone — Born April 8, 1903 New York City Died January 9, 1989 Madras Citizenship … Wikipedia
Karl Weierstrass — Infobox Scientist name = Karl Weierstrass |300px caption = Karl Theodor Wilhelm Weierstrass (Weierstraß) birth date = birth date|1815|10|31|mf=y birth place = Ostenfelde, Westphalia death date = death date and age|1897|2|19|1815|10|31|mf=y death… … Wikipedia
Satz von Stone-Weierstraß — Der Approximationssatz von Stone Weierstraß (nach Marshall Harvey Stone und Karl Weierstraß) ist ein Satz aus der Analysis, der sagt, unter welchen Voraussetzungen man jede stetige Funktion durch einfachere Funktionen beliebig gut approximieren… … Deutsch Wikipedia
Peter–Weyl theorem — In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Peter, in the … Wikipedia
STONE (M. H.) — STONE MARSHALL HARVEY (1903 1989) Après ses études à l’université Harvard, Marshall Harvey Stone enseigna dans diverses universités: Columbia (1925 1927), Yale (1931 1933), Harvard (1927 1931, puis 1933 1946) et Chicago (depuis 1944). Il fut élu… … Encyclopédie Universelle
Théorème de Weierstrass — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Plusieurs théorèmes sont attribués à Karl Weierstrass ou le mentionnent dans leur nom. Théorème de Bolzano Weierstrass Théorème de factorisation de… … Wikipédia en Français
Tychonoff's theorem — For other theorems named after Tychonoff, see Tychonoff s theorem (disambiguation). In mathematics, Tychonoff s theorem states that the product of any collection of compact topological spaces is compact. The theorem is named after Andrey… … Wikipedia
List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… … Wikipedia
List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia