Van Hove singularity

Van Hove singularity

A Van Hove singularity is a kink in the density of states (DOS) of a solid. The wavevectors at which Van Hove singularities occur are often referred to as critical points of the Brillouin zone. (The critical point found in phase diagrams is a completely separate phenomenon.) The most common application of the Van Hove singularity concept comes in the analysis of optical absorption spectra. The occurrence of such singularities was first analyzed by the Belgian physicist Léon Van Hove in 1953 for the case of phonon densities of states.

Theory

Consider a one-dimensional lattice of particles, with each particle separated by distance "a", with a total of N particles, for a total length of L=Na. A standing wave in this lattice will have a wave number "k" of the form

:k=frac{2pi}{lambda}=frac{2pi n}{L}

where lambda is wavelength, and "n" is an integer. (Positive integers will denote forward waves, negative integers will denote reverse waves.) The smallest wavelength possible is "2a" which corresponds to the largest possible wave number k_{max}=pi/a and which also corresponds to the maximum possible |n|: n_{max}=L/2a. We may define the density of states "g(k)dk" as the number of standing waves with wave vector "k" to "k+dk": [Parker, p.7.]

:g(k)dk = dn = frac{L}{2pi},dk

Extending the analysis to wavevectors in three dimensions the density of states in a box will be

:g(vec{k})d^3k =frac{L^3}{(2pi)^3},d^3k

where d^3k is a volume element in "k"-space, and which, for electrons, will need to be multiplied by a factor of 2 to account for the two possible spin orientations. By the chain rule, the DOS in energy space can be expressed as

:dE = frac{partial E}{partial k_x}dk_x +frac{partial E}{partial k_y}dk_y +frac{partial E}{partial k_z}dk_z =vec{ abla}E cdot dvec{k}

where vec{ abla} is the gradient in k-space.

The set of points in "k"-space which correspond to a particular energy "E" form a surface in "k"-space, and the gradient of "E" will be a vector perpendicular to this surface at every point (Ziman, 1972). The density of states as a function of this energy "E" is:

:g(E)dE=int_{partial E}g(vec{k}),d^3k = frac{L^3}{(2pi)^3}int_{partial E}dk_x,dk_y,dk_z

where the integral is over the surface partial E of constant "E". We can choose a new coordinate system k'_x,k'_y,k'_z, such that k'_z, is perpendicular to the surface and therefore parallel to the gradient of "E". If the coordinate system is just a rotation of the original coordinate system, then the volume element in k-prime space will be

:dk'_x,dk'_y,dk'_z = dk_x,dk_y,dk_z

We can then write "dE" as:

:dE=|vec{ abla}E|,dk'_z

and, substituting into the expression for "g(E)" we have:

:g(E)=frac{L^3}{(2pi)^3}intintfrac{dk'_x,dk'_y}

where the dk'_x,dk'_y term is an area element on the constant-"E" surface. The clear implication of the equation for g(E) is that at the k-points where the dispersion relation E(vec{k}) has an extremum, the integrand in the DOS expression diverges. The Van Hove singularities are the features that occur in the DOS function at these k-points.

A detailed analysis (Bassani 1975) shows that there are four types of Van Hove singularities in three-dimensional space, depending on whether the band structure goes through a local maximum, a local minimum or a saddle point. In three dimensions, the DOS itself is not divergent although its derivative is. The function g(E) tends to have square-root singularities (see the Figure) since for a spherical free electron Fermi surface

:E = hbar^2 k^2/2m so that |vec{ abla}E| = hbar^2 k/m = hbar sqrt{ frac{2E}{m.

In two dimensions the DOS is logarithmically divergent and in one dimension the DOS itself is infinite where vec{ abla}E is zero.

Experimental observation

The optical absorption spectrum of a solid is most straightforwardly calculated from the electronic band structure using Fermi's Golden Rule where the relevant matrix element to be evaluated is the dipole operator vec{A} cdot vec{p} where vec{A} is the vector potential and vec{p} is the momentum operator. The density of states which appears in the Fermi's Golden Rule expression is then the joint density of states, which is the number of electronic states in the conduction and valence bands that are separated by a given photon energy. The optical absorption is then essentially the product of the dipole operator matrix element (also known as the oscillator strength) and the JDOS.

The divergences in the two- and one-dimensional DOS might be expected to be a mathematical formality, but in fact they are readily observable. Highly anisotropic solids like graphite (quasi-2D) and Bechgaard salts (quasi-1D) show anomalies in spectroscopic measurements that are attributable to the Van Hove singularities. Van Hove singularities play a significant role in understanding optical intensities in single-walled NTs (SWNTs) which are also quasi-1D systems.

Notes

References

*L. Van Hove, [http://dx.doi.org/10.1103/PhysRev.89.1189 "The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal,"] Phys. Rev. 89, 1189–1193 (1953).
*cite book | last=Bassani | first=F. | coauthors = Pastori Parravicini, G. | title=Electronic States and Optical Transitions in Solids | publisher=Pergamon Press | year=1975 | id=ISBN 0-08-016846-9 This book contains an extensive discussion of the types of Van Hove singularities in different dimensions and illustrates the concepts with detailed theoretical-versus-experimental comparisons for Ge and graphite.
*cite book
first = John | last = Ziman | authorlink = John Ziman | year = 1972
title = Principles of the Theory of Solids | publisher = Cambridge University Press
id = ISBN B0000EG9UB

*M. A. Parker(1997-2004) [http://www.ece.rutgers.edu/~maparker/classes/582-Chapters/Ch07-Sol-State-Carriers/Ch07S16DensityStates.pdf "Introduction to Density of States" "Marcel-Dekker Publishing"] ]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Léon Van Hove — (Brussels, 1924 2 September, 1990) was a Belgian physicist and a former Director General of CERN. He developed a scientific career spanning mathematics, solid state physics, elementary particle and nuclear physics to cosmology. BiographyVan Hove… …   Wikipedia

  • Hove (disambiguation) — Hove is a town in East Sussex. It may also refer to:People* Chenjerai Hove (born 1956), a Zimbabwean writer * Joachim van den Hove (1567? 1620) , a Flemish composer * Léon Van Hove (born 1924), a physicist, former CERN Director General :* Van… …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

  • Klaus Bechgaard — (born March 5, 1945 in Copenhagen, Denmark) is a Danish scientist and chemist, noted for being one of the first scientists in the world to synthesize a number of organic charge transfer complexes and demonstrate their superconductivity, threreof… …   Wikipedia

  • Carrier scattering — Defect types include atom vacancies, adatoms, steps, and kinks which occur most frequently at surfaces due to finite material size causing crystal discontinuity. What all types of defects have in common, whether they be surface or bulk, is that… …   Wikipedia

  • VHS — Volkshochschule (International » German) * Video Home System (Community » Media) * Virtual High School (Academic & Science » Universities) * Virtual High School (Community » Educational) * Virtual High School (Community » Schools) * Very High… …   Abbreviations dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”