Binet–Cauchy identity

Binet–Cauchy identity

In algebra, the Binet–Cauchy identity, named after Jacques Philippe Marie Binet and Augustin Louis Cauchy, states that

: iggl(sum_{i=1}^n a_i c_iiggr)iggl(sum_{j=1}^n b_j d_jiggr) = iggl(sum_{i=1}^n a_i d_iiggr)iggl(sum_{j=1}^n b_j c_jiggr) + sum_{1le i < j le n} (a_i b_j - a_j b_i ) (c_i d_j - c_j d_i )

for every choice of real or complex numbers (or more generally, elements of a commutative ring).Setting "ai" = "ci" and "bi" = "di", it gives the Lagrange's identity, which is a stronger version of the Cauchy-Schwarz inequality for the Euclidean space scriptstylemathbb{R}^n.

The Binet–Cauchy identity and exterior algebra

When "n" = 3 the first and second terms on the right hand side become the squared magnitudes of dot and cross products respectively; in "n" dimensions these become the magnitudes of the dot and wedge products. We may write it

:(a cdot c)(b cdot d) = (a cdot d)(b cdot c) + (a wedge b) cdot (c wedge d),

where a, b, c, and d are vectors. It may also be written as a formula giving the dot product of two wedge products, as

:(a wedge b) cdot (c wedge d) = (a cdot c)(b cdot d) - (a cdot d)(b cdot c).,

Proof

Expanding the last term,

:sum_{1le i < j le n} (a_i b_j - a_j b_i ) (c_i d_j - c_j d_i ):=sum_{1le i < j le n} (a_i c_i b_j d_j + a_j c_j b_i d_i)+sum_{i=1}^n a_i c_i b_i d_i-sum_{1le i < j le n} (a_i d_i b_j c_j + a_j d_j b_i c_i)-sum_{i=1}^n a_i d_i b_i c_i

where the second and fourth terms are the same and artificially added to complete the sums as follows:

:=sum_{i=1}^n sum_{j=1}^na_i c_i b_j d_j-sum_{i=1}^n sum_{j=1}^na_i d_i b_j c_j.

This completes the proof after factoring out the terms indexed by "i". "(q. e. d.)"


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Identité de Binet-Cauchy — En mathématiques, et plus particulièrement en algèbre, l’identité de Binet–Cauchy, due à Jacques Philippe Marie Binet et Augustin Louis Cauchy, dit que[1] : pour des ensembles quelconques de nombres réels ou complexes (ou …   Wikipédia en Français

  • Lagrange's identity — In algebra, Lagrange s identity is the identity:iggl( sum {k=1}^n a k^2iggr) iggl(sum {k=1}^n b k^2iggr) iggl(sum {k=1}^n a k b kiggr)^2 = sum {i=1}^{n 1} sum {j=i+1}^n (a i b j a j b i)^2 iggl(= {1 over 2} sum {i=1}^n sum {j=1}^n (a i b j …   Wikipedia

  • Jacques Philippe Marie Binet — (February 2, 1786 May 12, 1856) was a French mathematician, physicist and astronomer born in Rennes; he died in Paris, France, in 1856. He made significant contributions to number theory, and the mathematical foundations of matrix algebra which… …   Wikipedia

  • Cross product — This article is about the cross product of two vectors in three dimensional Euclidean space. For other uses, see Cross product (disambiguation). In mathematics, the cross product, vector product, or Gibbs vector product is a binary operation on… …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Poincaré disk model — Poincaré disc model of great rhombitruncated {3,7} tiling …   Wikipedia

  • Klein model — In geometry, the Klein model, also called the projective model, the Beltrami–Klein model, the Klein–Beltrami model and the Cayley–Klein model, is a model of n dimensional hyperbolic geometry in which the points of the geometry are in an n… …   Wikipedia

  • Hyperdeterminant — In algebra, the hyperdeterminant is a generalisation of the determinant. Whereas a determinant is a scalar valued function defined on an n x n square matrix, a hyperdeterminant is defined on a multidimensional array of numbers or hypermatrix.… …   Wikipedia

  • Liste d'équations et formules — Ceci est une Liste des équations et formules par ordre alphabétique. Cette liste contient les équations, les formules, les relations et autres identités, égalités ou inégalités. Sommaire : Haut A B C D E F G H I J K L M N O P Q R S T U V W X …   Wikipédia en Français

  • Identité de Lagrange — En mathématiques, et plus particulièrement en algèbre, l’identité de Lagrange, découverte par Joseph Louis Lagrange, est une formule transformant un produit de sommes de carrés en une autre somme de carrés ; elle a d importantes conséquences …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”