- Synovial membrane
Infobox Anatomy
Name = PAGENAME
Latin = membrana synovialis capsulae articularis
GraySubject = 68
GrayPage = 282
Caption = Black is subintima, purple is intima, light brown is bone, orange is cartilage, yellow is synovial fluid
Caption2 = Synovial joint
Precursor =
System =
Artery =
Vein =
Nerve =
Lymph =
MeshName =
MeshNumber =
DorlandsPre = m_08
DorlandsSuf = 12522248Synovial membrane (or synovium) [EMedicineDictionary|synovial+membrane] is the soft tissue that lines the non-cartilaginous surfaces within
joints with cavities (synovial joint s). cite web |url=http://www.medcyclopaedia.com/library/topics/volume_iii_1/s/synovial_membrane.aspx |title=Medcyclopaedia - Synovial membrane |accessdate=2008-01-29 |format= |work=]The word "synovium" comes from a
Latin word meaning "with egg," because thesynovial fluid in joints that have a cavity between the bearing surfaces is likeegg white .tructure
Synovium is very variable but often has two layers.
* The outer layer, or
subintima , can be of almost any type: fibrous, fatty or loosely "areolar".* The inner layer, or
intima , consists of a sheet of cells thinner than a piece of paper.Where the underlying subintima is loose the intima sits on a pliable membrane, giving rise to the term "synovial membrane".
This membrane, together with the cells of the intima, provides something like an inner tube, sealing the synovial fluid from the surrounding tissue (effectively stopping the joints being squeezed dry when subject to impact, such as running).
The intimal cells are of two types,
fibroblast s andmacrophage s, both of which are different in certain respects from similar cells in other tissues.* The fibroblasts manufacture a long chain sugar polymer called
hyaluronan which makes the synovial fluid "ropy" like egg-white, together with a molecule calledlubricin , which lubricates the joint surfaces. The water of synovial fluid is not secreted as such, but is effectively trapped in the joint space by the hyaluronan.* The macrophages are responsible for the removal of undesirable substances from the synovial fluid.
The surface of synovium may be flat or may be covered with finger-like projections or
villi , which probably help to allow the soft tissue to change shape as the joint surfaces move one on another.Just beneath the intima most synovium has a dense net of small
blood vessel s which providenutrient s not only for synovium, but also for the avascular cartilage.In any one position much of the cartilage is close enough to get nutrition direct from synovium.
Some areas of cartilage have to obtain nutrients indirectly and may do so either from diffusion through cartilage or possibly by 'stirring' of synovial fluid, although the film is very thin.
Mechanics
Although a biological joint can resemble a man-made joint in being a
hinge or aball and socket , the engineering problems that nature must solve are very different because the joint works within an almost completely solid structure, with no wheels or nuts and bolts.In general the bearing surfaces of man made joints interlock, as in a hinge. This is rare for biological joints (although the
badger 's jaw interlocks).More often the surfaces are held together by cord-like
ligament s. Virtually all the space betweenmuscle s, ligaments,bone s and cartilage is filled with pliable solid tissue. The fluid-filled gap is mostly only a twentieth of a millimetre thick. This means that synovium has certain rather unexpected jobs to do. These may include:
# Providing a plane of separation, or disconnection, between solid tissues so that movement can occur with minimum bending of solid components. If this separation is lost, as in a 'frozen shoulder' the joint cannot move.
# Providing a packing that can change shape in whatever way is needed to allow the bearing surfaces to move on each other.
# Controlling the volume of fluid in the cavity so that it is just enough to allow the solid components to move over each other freely. This volume is normally so small that the joint is under slight suction.Pathology
Synovium can become irritated and thickened in conditions such as
rheumatoid arthritis . When this happens, the synovium can become a danger to the bearing surface structure in a variety of ways. Excess synovial fluid weeping from inflamed synovium can provide a barrier to diffusion of nutrients to cartilage. The synovial cells may also use up nutrients so that theglucose level in the tissue is almost zero. These factors may lead to starvation and death of cartilage cells. Synovial cells may also produceenzyme s which can digest the cartilage surface, although it is not clear that these will damage cartilage with healthy cells.ee also
*
synovial sheath References
*cite book |author=Edwards JCW |chapter=Chapter 17 |editor=Klippel, John H.; Hochberg, Marc C. |title=Rheumatology |publisher=Mosby |location=St. Louis |year=2003 |pages=159–68 |isbn=0-323-02404-1 |oclc= |doi= |accessdate=
Wikimedia Foundation. 2010.