- Forbidden mechanism
A forbidden mechanism or forbidden line is a concept in
physics /chemistry . It is aspectral line emitted byatom s undergoing energy transitions not normally allowed by theselection rules ofquantum mechanics . In chemistry, "forbidden" means absolutely impossible due to natural laws, but with the assumption of an ideal symmetry. In physics it means that the process cannot proceed via the most efficient (electric dipole) route. Although the transitions are nominally "forbidden", there is a non-zero probability of their spontaneous occurrence, should anatom ormolecule be raised to an excited state. More precisely, there is a certain probability that such an excited atom will make a forbidden transition to a lower energy state per unit time; by definition this probability is much lower than that for any transition permitted by the selection rules. Therefore, if a state can de-excite via a permitted transition (or otherwise, e.g. via collisions) it will almost certainly do so rather than choosing the forbidden route. Nevertheless, "forbidden" transitions are only relatively unlikely: states that can only decay in this way (so-called meta-stable states) usually have lifetimes of order milliseconds to seconds, compared to less than a microsecond for decay via permitted transitions.Forbidden emission lines have only been observed in extremely low-
density gases and plasmas, either inouter space or in the extremeupper atmosphere of theEarth . Even the hardest laboratoryvacuum on Earth is still too dense for forbidden line emission to occur before atoms are collisionally de-excited. However, in space environments, densities may be only a few atoms percubic centimetre , making atomic collisions unlikely. Under such conditions, once an atom or molecule has been excited for any reason into a meta-stable state, then it is almost certain to decay by emitting a forbidden-line photon. Since meta-stable states are rather common, forbidden transitions account for a significant percentage of the photons emitted by the ultra-low density gas in space.Forbidden line transitions are noted by placing square brackets around the atomic or molecular species in question, e.g. [O III| [OIII] or [S II] . Forbidden lines of
nitrogen ( [N II] at 654.8 and 658.4 nm),sulfur ( [S II] at 671.6 and 673.1 nm), andoxygen ( [O II] at 372.7 nm, and [O III] at 495.9 and 500.7 nm) are commonly observed in astrophysical plasmas. These lines are extremely important to theenergy balance of such things as planetary nebulae andH II region s. Also, the forbidden 21-cm hydrogen line is of the utmost importance for radio astronomy as itallows very cold neutral hydrogen gas to be seen.References
*Osterbrock, D.E., "Astrophysics of gaseous nebulae and active galactic nuclei", University Science Books, 1989, ISBN 0-935702-22-9.
Wikimedia Foundation. 2010.