Equiconsistency

Equiconsistency

In mathematical logic, two theories are equiconsistent if, roughly speaking, they are "as consistent as each other".

It is not in general possible to prove the absolute consistency of a theory T. Instead we usually take a theory S, believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T is consistent relative to S. If S is also consistent relative to T then we say that S and T are equiconsistent.

Contents

Consistency

In mathematical logic, formal theories are studied as mathematical objects. Since some theories are powerful enough to model different mathematical objects, it is natural to wonder about their own consistency.

Hilbert proposed a program at the beginning of the 20th century whose ultimate goal was to show, using mathematical methods, the consistency of mathematics. Since most mathematical disciplines can be reduced to arithmetic, the program quickly became the establishment of the consistency of arithmetic by methods formalizable within arithmetic itself.

Gödel's incompleteness theorems show that Hilbert's program cannot be realized: If a consistent recursively enumerable theory is strong enough to formalize its own metamathematics (whether something is a proof or not), i.e. strong enough to model a weak fragment of arithmetic (Robinson arithmetic suffices), then the theory cannot prove its own consistency. There are some technical caveats as to what requirements the formal statement representing the metamathematical statement "The theory is consistent" need to satisfy, but the outcome is that if a (sufficiently strong) theory can prove its own consistency then either there is no computable way of identifying whether a statement is even an axiom of the theory or not, or else the theory itself is inconsistent (in which case it can prove anything, including false statements such as its own consistency).

Given this, instead of outright consistency, one usually considers relative consistency: Let S and T be formal theories. Assume that S is a consistent theory. Does it follow that T is consistent? If so, then T is consistent relative to S. Two theories are equiconsistent if each one is consistent relative to the other.

Consistency strength

If T is consistent relative to S, but S is not known to be consistent relative to T, then we say that S has greater consistency strength than T. Of course, when discussing these issues of consistency strength the metatheory in which the discussion takes places needs to be carefully addressed. For theories at the level of second-order arithmetic, the reverse mathematics program has much to say. Consistency strength issues are a usual part of set theory, since this is a recursive theory that can certainly model most of mathematics. The usual set of axioms of set theory is called ZFC. When a set theoretic statement A is said to be equiconsistent to another B, what is being claimed is that in the metatheory Peano Arithmetic it can be proven that the theories ZFC+A and ZFC+B are equiconsistent. Usually, primitive recursive arithmetic can be adopted as the metatheory in question, but even if the metatheory is ZFC or an extension of it, the notion is meaningful. Thus, the method of forcing allows one to show that the theories ZFC, ZFC+CH and ZFC+¬CH are all equiconsistent.

When discussing fragments of ZFC or their extensions (for example, ZF, set theory without the axiom of choice, or ZF+AD, set theory with the axiom of determinacy), the notions described above are adapted accordingly. Thus, ZF is equiconsistent with ZFC, as shown by Gödel.

See also

References

A. Kanamori, 2003. The Higher Infinite. Springer. ISBN 3-540-00384-3


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • First-order logic — is a formal logical system used in mathematics, philosophy, linguistics, and computer science. It goes by many names, including: first order predicate calculus, the lower predicate calculus, quantification theory, and predicate logic (a less… …   Wikipedia

  • Banach–Tarski paradox — The Banach–Tarski paradox is a theorem in set theoretic geometry which states that a solid ball in 3 dimensional space can be split into several non overlapping pieces, which can then be put back together in a different way to yield two identical …   Wikipedia

  • Consistency — For other uses, see Consistency (disambiguation). In logic, a consistent theory is one that does not contain a contradiction.[1] The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a …   Wikipedia

  • Woodin cardinal — In set theory, a Woodin cardinal (named for W. Hugh Woodin) is a cardinal number λ such that for all : f : λ rarr; λthere exists:κ < λ with { f (β)|β …   Wikipedia

  • Eugenio Beltrami — Infobox Scientist name = Eugenio Beltrami image width = 170px caption = Eugenio Beltrami birth date = birth date|1835|11|16|df=y birth place = Cremona, Lombardy, Austrian Empire death date = death date and age|1899|6|4|1835|11|16|df=y death place …   Wikipedia

  • Consistency (disambiguation) — Consistency can refer to: Consistency (negotiation), the psychological need to be consistent with prior acts and statements Consistency , an 1887 speech by Mark Twain The consistency criterion, a measure of a voting system requiring that where… …   Wikipedia

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

  • Ordinal analysis — In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. The field was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that… …   Wikipedia

  • Prueba de consistencia — Saltar a navegación, búsqueda En lógica matemática, un sistema formal es consistente si no contiene una contradicción, o, en forma más precisa, no existe una proposición φ tal que se puede demostrar o deducir simultáneamente la proposición φ y su …   Wikipedia Español

  • Moti Gitik — Fields Mathematics Institutions Tel Aviv University Moti Gitik is a mathematician, working in set theory. Gitik is professor at the Tel Aviv University. He proved the con …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”