Molien series

Molien series

In mathematics, a Molien series is a generating function attached to a linear representation ρ of a group G on a finite-dimensional vector space V. It counts the homogeneous polynomials of a given total degree d that are invariants for G. It is named for Theodor Molien.

Contents

Formulation

More formally, there is a vector space of such polynomials, for each given value of d = 0, 1, 2, ..., and we write nd for its vector space dimension, or in other words the number of linearly independent homogeneous invariants of a given degree. In more algebraic terms, take the d-th symmetric power of V, and the representation of G on it arising from ρ. The invariants form the subspace consisting of all vectors fixed by all elements of G, and nd is its dimension.

The Molien series is then by definition the formal power series

M(t) = ndtd.
d

This can be looked at another way, by considering the representation of G on the symmetric algebra of V, and then the whole subalgebra R of G-invariants. Then nd is the dimension of the homogeneous part of R of dimension d, when we look at it as graded ring. In this way a Molien series is also a kind of Hilbert function. Without further hypotheses not a great deal can be said, but assuming some conditions of finiteness it is then possible to show that the Molien series is a rational function. The case of finite groups is most often studied.

Formula

Molien showed that

 M(t) = \frac{1}{|G|} \sum_{g\in G} \frac{1}{\det(I-tg)}

This means that the coefficient of td in this series is the dimension nd defined above. It assumes that the characteristic of the field does not divide |G| (but even without this assumption, Molien's formula in the form  \left|G\right| \cdot M\left(t\right) = \sum_{g\in G} \frac{1}{\det(I-tg)} is valid, although it does not help with computing M(t)).

Example

Consider S3 acting on R3 by permuting the coordinates. Note that det(Itg) is constant on conjugacy classes, so it is enough to take one from each of the three classes in S3; so det(Ite) = (1 − t)3,det(Itσ2) = (1 − t)(1 − t2) and det(1 − tσ3) = (1 − t3) where σ2 = (1,2) and σ3 = (1,2,3).

Then


M(t) = \frac16\left(\frac{1}{(1-t)^3} + \frac3{(1-t)(1-t^2)} + \frac{2}{1-t^3}\right)
= \frac{1}{(1-t)(1-t^2)(1-t^3)}

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Theodor Molien — or Fedor Eduardovich Molin (September 10, 1861 December 25, 1941) was a Baltic German mathematician. He was born in Riga, Latvia, which at that time was a part of Russian Empire. Molien studied associative algebras and polynomial invariants of… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Invariant theory — is a branch of abstract algebra that studies actions of groups on algebraic varieties from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not …   Wikipedia

  • Invariant polynomial — In mathematics, an invariant polynomial is a polynomial P that is invariant under a group Gamma acting on a vector space V. Therefore P is a Gamma invariant polynomial if :P(gamma x) = P(x) for all gamma in Gamma and x in V.Cases of particular… …   Wikipedia

  • Représentations d'un groupe fini — En mathématiques, un groupe est une structure algébrique qui consiste en un ensemble muni d une unique opération. Cette opération possède de bonnes propriétés, elle est associative, il existe un élément neutre et tout élément admet un inverse. Un …   Wikipédia en Français

  • Representations d'un groupe fini — Représentations d un groupe fini En mathématiques, un groupe est une structure algébrique dont la définition est remarquablement simple. Elle consiste en un ensemble muni d une unique opération. Cette opération possède de bonnes propriétés, elle… …   Wikipédia en Français

  • Représentation des groupes finis — Représentations d un groupe fini En mathématiques, un groupe est une structure algébrique dont la définition est remarquablement simple. Elle consiste en un ensemble muni d une unique opération. Cette opération possède de bonnes propriétés, elle… …   Wikipédia en Français

  • Représentations des groupes finis — Représentations d un groupe fini En mathématiques, un groupe est une structure algébrique dont la définition est remarquablement simple. Elle consiste en un ensemble muni d une unique opération. Cette opération possède de bonnes propriétés, elle… …   Wikipédia en Français

  • Andre Rene Roussimoff — André René Roussimoff France Daten …   Deutsch Wikipedia

  • Andre Roussimoff — André René Roussimoff France Daten …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”