Invariant theory — is a branch of abstract algebra that studies actions of groups on algebraic varieties from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not … Wikipedia
Invariant subspace problem — In the field of mathematics known as functional analysis, one of the most prominent open problems is the invariant subspace problem, sometimes optimistically known as the invariant subspace conjecture. It is the question whether the following… … Wikipedia
Polynomial ring — In mathematics, especially in the field of abstract algebra, a polynomial ring is a ring formed from the set of polynomials in one or more variables with coefficients in another ring. Polynomial rings have influenced much of mathematics, from the … Wikipedia
Invariant (mathematics) — In mathematics, an invariant is a property of a class of mathematical objects that remains unchanged when transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually… … Wikipedia
Invariant de nœuds — Les deux nœuds sont les mêmes, leur invariant est donc identique. En théorie des nœuds, un invariant de nœuds est une quantité définie pour chaque nœud qui est la même pour tous les nœuds équivalents. On parlera d équivalence lorsqu on peut… … Wikipédia en Français
Geometric invariant theory — In mathematics Geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper… … Wikipedia
List of polynomial topics — This is a list of polynomial topics, by Wikipedia page. See also trigonometric polynomial, list of algebraic geometry topics.Basics*Polynomial *Coefficient *Monomial *Polynomial long division *Polynomial factorization *Rational function *Partial… … Wikipedia
Alexander polynomial — In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a… … Wikipedia
Jones polynomial — In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1983. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial … Wikipedia
Bracket polynomial — In the mathematical field of knot theory, the bracket polynomial (also known as the Kauffman bracket) is a polynomial invariant of framed links. Although it is not an invariant of knots or links (as it is not invariant under type I Reidemeister… … Wikipedia