- Energy filtered transmission electron microscopy
Energy-filtered transmission electron microscopy (EFTEM) is a technique used in
Transmission electron microscopy , in which only electrons of particular kinetic energies are used to form the image or diffraction pattern. The technique can be used to aid chemical analysis of the sample in conjunction with complementary techniques such as electron crystallography.Principle
If a very thin sample is illuminated with a beam of high-energy electrons, then a majority of the electrons will pass unhindered through the sample but some will interact with the sample, being scattered elastically or inelastically (
phonon scattering,plasmon scattering or inner shell ionisation). Inelastic scattering results in both a loss of energy and a change in momemtum, which in the case of inner shell ionisation is characteristic of the element in the sample.If the electron beam emerging from the sample is passed through a magnetic prism, then the flight path of the electrons will vary depending on their energy. This technique is used to form spectra in
Electron energy loss spectroscopy (EELS), but it is also possible to place an adjustable slit to allow only electrons with a certain range of energies through, and reform an image using these electrons on a detector.The energy slit can be adjusted so as to only allow electrons which have not lost energy to pass through to form the image. This prevents inelastic scattering from contributing to the image, and hence produces an enhanced contrast image.
Adjusting the slit to only allow electrons which have lost a specific amount of energy can be used to obtain elementally sensitive images. As the ionisation signal is often significantly smaller than the background signal, it is normally necessary to obtain more than one image at varying energies to remove the background effect. The simplest method is known as the "jump ratio" technique, where an image recorded using electrons at the energy of the maximum of the absorption peak caused by a particular inner shell ionisation is divided by an image recorded just before the ionisation energy. It is often necessary to cross-correlate the images to compensate for relative drift of the sample between the two images.
Improved elemental maps can be obtained by taking a series of images, allowing quantitative analysis and improved accuracy of mapping where more than one element is involved. By taking a series of images, it is also possible to extract the EELS profile from particular features.
External links
* [http://www.smt.zeiss.com/c1256e4600305472/Contents-Frame/30b85f74aa66dd75c1256e5c002ad32e EFTEM imaging modes Carl Zeiss]
* [http://www.weels.net A Database of EELS fine structure fingerprints at Cornell]Further reading
*cite book | author=Williams D.B., Carter C.B | title=Transmission Electron Microscopy: A Textbook for Materials Science | publisher=Kluwer Academic / Plenum Publishers | year=1996 | editor= | id=ISBN 0-306-45324-X
*cite book | author=Channing. C. Ahn (ed.) | title=Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS ATLAS | publisher=Wiley-VHC | year=2004 | id=ISBN 3-527-40565-8
* F. Hofer, P. Warbichler and W. Grogger, "Imaging of nanometer-sized precipitates in solids by electron spectroscopic imaging", [http://www.sciencedirect.com/science/article/B6TW1-3YYTTMD-2/2/b9229a5a9fbc2aab2c1de9dcd91a1a61 Ultramicroscopy, Volume 59, Issues 1-4, July 1995, Pages 15-31.]
ee also
*
TEM
Wikimedia Foundation. 2010.