TEA laser

TEA laser

The CO2 TEA laser was invented in the late 1960s by Dr Jacques Beaulieu working at the Defence Research Establishment, Valcartier, in Quebec, Canada. The development was kept secret until 1970 when brief details were published.

C K N Patel, working at the Bell Telephone Laboratories in 1963, first demonstrated laser output at 10.6 µm from a low pressure RF excited CO2 gas discharge. With the addition of nitrogen and helium and using a DC electrical discharge, CW powers of around 100 W were achieved. By pulsing the discharge using higher voltages or Q-switching using a rotating mirror, pulse powers of a few kilowatts could be obtained, but this was the practical limit.

Higher peak powers could only be achieved by increasing the density of excited CO2 molecules. The capacity for stored energy per unit volume of gas increases linearly with density and thus gas pressure, but the voltage needed to achieve gas breakdown and couple energy into the upper laser levels, increases at the same rate. The practical solution avoiding very high voltages was to pulse the voltage transversely to the optical axis (rather than longitudinally as was the case for low pressure lasers), limiting the breakdown distance to a few centimetres. This allowed the use of manageable voltages of a few tens of kV. The problem was how to initiate and stabilize a glow discharge at these much higher gas pressures, without the discharge degenerating into a bright high-current arc, and how to achieve this over a useful volume of gas.

Beaulieu (in 1970) reported a "T"ransversely "E"xcited "A"tmospheric Pressure CO2 Laser. His solution to the problem of arc formation was to have a conducting bar facing a linear array of pins with a separation of a few centimetres. The pins were individually loaded with resistors forcing the discharge from each pin into a low current brush or glow discharge which fanned out towards the bar. The laser cavity probed 100-200 of these discharges in series providing the laser gain. A fast discharge capacitor rapidly switched across the laser electrodes using a spark gap or thyratron provided the high voltage pulses.

These first “Pin-Bar” TEA lasers, operating at around one pulse per second, were easy and cheap to construct. By operating at atmospheric pressure, complex vacuum and gas-handling systems could be avoided. They could produce MW peak powers of a few 100 ns duration capable of breaking down air if brought to a focus with a short focal-length lens. Disadvantages were poor gain symmetry, dissipation in the resistors and size.

The first true TEA laser was realised by Pearson and Lamberton working at the UK MOD Services Electronic Research Laboratory at Baldock. They used a pair of Rogowski-profiled electrodes separated by one or two centimetres. Their double-discharge design coupled part of the discharge energy to a thin wire running parallel to and offset from one side of the electrodes. This served to “preionise” the gas resulting in a uniform volumetric glow-discharge. Of equal importance to preionisation, was the need for the discharge to be very fast. By dumping energy into the gas rapidly, high-current arcs had no time to form.

Pearson and Lamberton used a streak-camera to verify the sequence of events. As the voltage erected across the electrodes, field emission from the thin wire resulted in a sheet discharge between itself and the anode. Since the subsequent main discharge started from the cathode, it was suggested that photoemission was the initiating mechanism. Subsequently, other workers demonstrated alternative methods for achieving preionisation. These included dielectrically isolated wires and electrodes, sliding spark arrays, electron beams and pins impedance-loaded with capacitors.

The original Pearson-Lamberton TEA laser could be operated at around one pulse per second when switched with a spark gap discharging a capacitor resistively charged from a DC power supply. By circulating the gas between the electrodes, using lossless capacitor charging and replacing the spark-gap with a thyratron, repetition rates in excess of a thousand pulses per second were subsequently achieved with various designs of TEA laser.

Currently, TEA CO2 lasers are used extensively for product marking. A logo, serial number or "best-before" date is marked on to a variety of packaging materials by passing the laser light through a mask containing the information, and focusing it down to an intensity which ablates the material to be marked.

The double-discharge method required to initiate stable high-pressure gas discharges can be used both below and above atmospheric pressure, and these devices too can be referred to as TEA lasers. Commercial Excimer lasers operating in the ultra-violet use a double-discharge regime very similar to the CO2 TEA laser. Using Krypton, Argon or Xenon chloride or fluouride gas buffered with helium to 2–3 atmospheres of pressure, Excimer lasers can produce megawatt pulses of ultra-violet laser light.

References:

1. C K N Patel, "Interpretation of CO2 Optical Maser Experiments", Phys. Rev. Lett., 12, No 21, pp 588 – 590, May 1964

2. A J Beaulieu, "Transversely Excited Atmospheric Pressure CO2 Lasers", Appl. Phys Lett., 16, No 12, pp 504 – 505, June 1970

3. P R Pearson and H M Lamberton, "Atmospheric Pressure CO2 Lasers Giving High Output Energy per Unit Volume", IEEE J Quant Elec., 8, No2, pp 145 – 149, February 1972.

Microscopic description of the discharge

In most over-voltage spark gaps avalanches of electrons move towards the anode.As the number of electrons increases Coulomb's law states that also the field strength increases.The strong field accelerates the avalanche.A slow rise time of the voltage lets the electrons drift towards the anode before they can generate an avalanche.Electrophilic molecules capture electrons before they can generate an avalanche.Thermal effects destabilize a homogeneous discharge electron and ion diffusion stabilizes it.

Reference:

4. J I Levatter and S C Lin, "Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures", J.Appl.Phys. 51, No2, pp 210 – 222, January 1980.

Applications

*nitrogen laser
*carbon dioxide laser
*excimer laser

External links

* [http://www.physik.tu-darmstadt.de/lpp/co2s/TEA_CO2_Las_mod.html Modelling & Application of TEA CO2 lasers]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Laser — For other uses, see Laser (disambiguation). United States Air Force laser experiment …   Wikipedia

  • TEA — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. L acronyme TEA ou le mot Tea peuvent signifier : Trans European Airways, une ancienne compagnie d aviation basée en Belgique ; Agence d… …   Wikipédia en Français

  • Láser de Nitrógeno — Saltar a navegación, búsqueda El láser de Nitrógeno (N2) es uno de los láseres más fáciles de construir y de más bajo coste. Su funcionamiento se logra al producir una rápida y fuerte descarga entre dos placas de aluminio que ioniza el nitrógeno… …   Wikipedia Español

  • Láser de nitrógeno — El láser de nitrógeno (N2) es uno de los láseres más fáciles de construir y de más bajo coste. Su funcionamiento se logra al producir una rápida y fuerte descarga entre dos placas de aluminio que ioniza el nitrógeno presente y crea la inversión… …   Wikipedia Español

  • Tea (disambiguation) — NOTOC GeneralTea may refer to: *Tea plant (or Camellia sinensis), the plant species whose leaves and leaf buds are used to produce tea **Tea, a beverage made by steeping processed leaves, buds, or twigs of the tea bush (Camellia sinensis) in hot… …   Wikipedia

  • Laser acronyms — Here, is a list of acronyms used in laser physics, applications and technology.A*AOM – acousto optic modulator *APD – avalanche photodiode *APM – additive pulse mode locking *ASE – amplified spontaneous emission *AWG – arrayed waveguide… …   Wikipedia

  • TEA — 1. Torque Equilibrium Attitude Contributor: CASI 2. Transversely Excited Atmospheric LASER Contributor: LaRC 3. Transversely Excited Atmospheric Pressure Laser Contributor: CASI …   NASA Acronyms

  • Nitrogen laser — A 337nm wavelength and 170 µJ pulse energy 20 Hz cartridge nitrogen laser A nitrogen laser is a gas laser operating in the ultraviolet range[1] (typically 337.1 nm) using molecular nitrogen as its gain medium, pumped by an electrical… …   Wikipedia

  • Buzz Lightyear's Laser Blast — Buzz Lightyear s Astro Blasters Buzz lightyear s Astro Blasters, Buzz Lightyear Laser Blast (Buzz l Eclair Bataille Laser, en français) ou Buzz Lightyear s Space Ranger Spin est une attraction des parcs Disney. Elle possède actuellement plusieurs …   Wikipédia en Français

  • Mad Tea Party — Autre(s) nom(s) : Mad Hatter s Tea Cups Alice s Tea Party Mad Hatter Tea Cups Localisation Parc : Disneyland Zone : Fantasyland Lieu : Anaheim …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”