Pseudo-arc

Pseudo-arc

In point-set topology, the pseudo-arc is the simplest nondegenerate hereditarily indecomposable continuum. It was first discovered, in 1922, by the renowned Polish topologist Bronislaw Knaster. The following definitions are, with slight modifications, due to Wayne Lewis (see the references section below). Other definitions have appeared in papers by R.H. Bing and Edwin E. Moise; they yield homeomorphic spaces.

Definitions

Chains

At the heart of the definition of the pseudo-arc is the concept of a "chain", which is defined as follows:

:A chain is a finite collection of open sets mathcal{C}={C_1,C_2,ldots,C_n} in a metric space such that C_icap C_j eemptyset if and only if |i-j|le1. The elements of a chain are called its links, and a chain is called an ε-chain if each of its links has diameter less than ε.

While being the simplest of the type of spaces listed above unlike only the other cant be described toward one., the pseudo-arc is actually very complex. The concept of a chain being "crooked" (defined below) is what endows the pseudo-arc with its complexity. Informally, it requires a chain to follow a certain recursive zig-zag pattern in another chain. To 'move' from the "m"th link of the larger chain to the "n"th, the smaller chain must first move in a crooked manner from the "m"th link to the ("n"-1)th link, then in a crooked manner to the ("m"+1)th link, and then finally to the "n"th link.

More formally:

:Let mathcal{C} and mathcal{D} be chains such that

:# each link of mathcal{D} is a subset of a link of mathcal{C}, and:# for any indices "i", "j", "m", and "n" with D_icap C_m eemptyset, D_jcap C_n eemptyset, and m, there exist indices "k" and "l" with i (or i>k>l>j) and D_ksubseteq C_{n-1} and D_lsubseteq C_{m+1}.

:Then mathcal{D} is crooked in mathcal{C}.

Pseudo-arc

For any collect "C" of sets, let C^{*} denote the union of all of the elements of "C". That is, let:C^*=igcup_{Sin C}S.

The "pseudo-arc" is defined as follows:

:Let "p" and "q" be distinct points in the plane and left{mathcal{C}^{i} ight}_{iinmathbb{N be a sequence of chains in the plane such that for each "i",

:#the first link of mathcal{C}^i contains "p" and the last link contains "q",:#the chain mathcal{C}^i is a 1/2^i-chain,:#the closure of each link of mathcal{C}^{i+1} is a subset of some link of mathcal{C}^i, and:#the chain mathcal{C}^{i+1} is crooked in mathcal{C}^i.

:Let::P=igcap_{iinmathbb{Nleft(mathcal{C}^i ight)^{*}.:Then "P" is a pseudo-arc.

External links

* [http://www.pseudoarc.com Pseudoarc for the People] - Ongoing art project based on the pseudoarc

References

* Bing, R.H. 1948. "A Homogeneous Indecomposable Plane Continuum", Duke Mathematical Journal Volume 15, no. 3, 729–742.
* Lewis, Wayne. 1999. "The Pseudo-Arc", Bol. Soc. Mat. Mexicana Volume 5, 25–77.
* Moise, Edwin. 1948. "An Indecomposable Plane Continuum Which is Homeomorphic to Each of Its Nondegenerate Subcontinua", Transactions of the American Mathematical Society Volume 63, no. 3, 581–594.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Arc length — Determining the length of an irregular arc segment is also called rectification of a curve. Historically, many methods were used for specific curves. The advent of infinitesimal calculus led to a general formula that provides closed form… …   Wikipedia

  • arc — 1. arc [ ark ] n. m. • 1080; lat. arcus 1 ♦ Arme formée d une tige souple (de bois, de métal) que l on courbe au moyen d une corde attachée aux deux extrémités pour lancer des flèches. Arc et arbalète. Bander, tendre l arc. Tirer des flèches avec …   Encyclopédie Universelle

  • Arc (Jeanne) — Jeanne d Arc Pour les articles homonymes, voir Jeanne d Arc (homonymie). Jeanne d Arc …   Wikipédia en Français

  • Arc d'Auguste (Fano) — Pour les articles homonymes, voir Arc d Auguste. L Arc d Auguste de Fano. L Arc d Auguste est une porte romaine située dans la ville de Fano, dans la …   Wikipédia en Français

  • Jeane D'arc — Jeanne d Arc Pour les articles homonymes, voir Jeanne d Arc (homonymie). Jeanne d Arc …   Wikipédia en Français

  • Jeanne d'Arc — Pour les articles homonymes, voir Jeanne d Arc (homonymie) …   Wikipédia en Français

  • Jeanne d'arc — Pour les articles homonymes, voir Jeanne d Arc (homonymie). Jeanne d Arc …   Wikipédia en Français

  • Jeanne d’Arc — Jeanne d Arc Pour les articles homonymes, voir Jeanne d Arc (homonymie). Jeanne d Arc …   Wikipédia en Français

  • Jeanne d’Arc, surnommée la Pucelle d’Orléans — Jeanne d Arc Pour les articles homonymes, voir Jeanne d Arc (homonymie). Jeanne d Arc …   Wikipédia en Français

  • JEANNE D’ARC — qui, grâce à la documentation d’une exceptionnelle richesse constituée par les dossiers de ses deux procès (condamnation en 1431, réhabilitation en 1456), est l’un des personnages les mieux connus du XVe siècle reste pourtant mystérieuse. Cela… …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”