Tate conjecture

Tate conjecture

In mathematics, the Tate conjecture is a 1963 conjecture of John Tate linking algebraic geometry, and more specifically the identification of algebraic cycles, with Galois modules coming from étale cohomology. It is unsolved in the general case, as of 2005, and, like the Hodge conjecture to which it is related at the level of some important analogies, it is generally taken to be one of the major problems in the field.

Tate's original statement runs as follows. Let "V" be a smooth algebraic variety over a field "k", which is finitely-generated over its prime field. Let "G" be the absolute Galois group of "k". Fix a prime number "l". Write "H"*("V") for the l-adic cohomology (coefficients in the l-adic integers, scalars then extended to the l-adic numbers) of the base extension of "V" to the given algebraic closure of "k"; these groups are "G"-modules. Consider

:"H""2i"("V")("i") = "W"

for the "i"-fold Tate twist of the cohomology group in degree 2"i", for "i" = 1, 2, ..., "d" where "d" is the dimension of "V". Under the Galois action, the image of "G" is a compact subgroup of "GL"("V"), which is an "l"-adic Lie group. It follows by the "l"-adic version of Cartan's theorem that as a closed subgroup it is also a Lie subgroup, with corresponding Lie algebra. Tate's conjecture concerns the subspace "W"′ of "W" invariant under this Lie algebra (that is, on which the infinitesimal transformations of the Lie algebra representation act as 0). There is another characterization used for "W"′, namely that it consists of vectors "w" in "W" that have an open stabilizer in "G", or again have a finite orbit.

Then the Tate conjecture states that "W"′ is also the subspace of "W" generated by the cohomology classes of algebraic cycles of codimension "i" on "V".

An immediate application, also given by Tate, takes "V" as the cartesian product of two abelian varieties, and deduces a conjecture relating the morphisms from one abelian variety to another to intertwining maps for the Tate modules. This is also known as the "Tate conjecture", and several results have been proved towards it.

The same paper also contains related conjectures on L-functions.

References

*John Tate, "Algebraic Cycles and Poles of Zeta Functions", Arithmetical Algebraic Geometry (1965) edited by O. F. G. Schilling


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Sato-Tate conjecture — In mathematics, the Sato Tate conjecture is a statistical statement about the family of elliptic curves Ep over the finite field with p elements, with p a prime number, obtained from an elliptic curve E over the rational number field, by the… …   Wikipedia

  • Birch–Tate conjecture — The Birch–Tate conjecture is based on algebraic K theory proposed by both Bryan John Birch and John Tate. It relates the value of a Dedekind zeta function at s = −1 to the order of K 2 of the ring of integers, for a number field F .Progress on… …   Wikipedia

  • Conjecture de Satō-Tate — En mathématiques, la conjecture de Satō Tate est un énoncé statistique à propos de la famille des courbes elliptiques Ep sur le corps fini à p éléments, avec p un nombre premier, obtenues à partir d une courbe elliptique E sur le corps des… …   Wikipédia en Français

  • Tate module — In mathematics, a Tate module is a Galois module constructed from an abelian variety A over a field K . It is denoted: T l ( A ) where l is a given prime number (the letter p is traditionally reserved for the characteristic of K ; the case where… …   Wikipedia

  • Conjecture De Satō-Tate — En mathématiques, la conjecture de Satō Tate est un énoncé statistique à propos de la famille des courbes elliptiques sur le corps fini à p éléments, avec p un nombre premier, obtenu à partir d une courbe elliptique E sur le corps des nombres… …   Wikipédia en Français

  • Conjecture de Sato-Tate — Conjecture de Satō Tate En mathématiques, la conjecture de Satō Tate est un énoncé statistique à propos de la famille des courbes elliptiques sur le corps fini à p éléments, avec p un nombre premier, obtenu à partir d une courbe elliptique E sur… …   Wikipédia en Français

  • Conjecture de satō-tate — En mathématiques, la conjecture de Satō Tate est un énoncé statistique à propos de la famille des courbes elliptiques sur le corps fini à p éléments, avec p un nombre premier, obtenu à partir d une courbe elliptique E sur le corps des nombres… …   Wikipédia en Français

  • Conjecture De Birch Et Swinnerton-Dyer — Pour les articles homonymes, voir BSD (homonymie). En mathématiques, la conjecture de Birch et Swinnerton Dyer (BSD) relie le rang du groupe abélien de points sur un corps de nombres d une courbe elliptique E à l ordre du zéro de la fonction L… …   Wikipédia en Français

  • Conjecture de birch et swinnerton-dyer — Pour les articles homonymes, voir BSD (homonymie). En mathématiques, la conjecture de Birch et Swinnerton Dyer (BSD) relie le rang du groupe abélien de points sur un corps de nombres d une courbe elliptique E à l ordre du zéro de la fonction L… …   Wikipédia en Français

  • Conjecture de Taniyama-Shimura — Conjecture de Shimura Taniyama Weil La conjecture de Shimura Taniyama Weil énonce que, pour toute courbe elliptique sur , il existe une forme modulaire de poids 2 pour un sous groupe de congruence Γ0(N), ayant même fonction L que la courbe… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”