- Ore's theorem
-
For Ore's theorem in ring theory, see Ore condition.
Ore's theorem is a result in graph theory proved in 1960 by Norwegian mathematician Øystein Ore. It gives a sufficient condition for a graph to be Hamiltonian, essentially stating that a graph with "sufficiently many edges" must contain a Hamilton cycle. Specifically, the theorem considers the sum of the degrees of any two non-adjacent vertices: if this sum is always at least equal to the total number of vertices in the graph, then the graph is Hamiltonian.
Contents
Formal statement
Let G be a (finite and simple) graph with n ≥ 3 vertices. We denote by deg v the degree of a vertex v in G, i.e. the number of incident edges in G to v. Then, Ore's theorem states that if
- deg v + deg w ≥ n for every pair of non-adjacent vertices v and w of G (*)
then G is Hamiltonian.
Proof
Suppose it were possible to construct a graph that fulfils condition (*) which is not Hamiltonian. According to this supposition, let G be a graph on n ≥ 3 vertices that satisfies property (*), is not Hamiltonian, and has the maximum possible number of edges among all n-vertex non-Hamiltonian graphs that satisfy property (*). Because the number of edges was chosen to be maximal, G must contain a Hamiltonian path v1v2...vn, for otherwise it would be possible to add edges to G without breaching property (*). Since G is not Hamiltonian, v1 cannot be adjacent to vn, for otherwise v1v2...vn would be a Hamiltonian cycle. By property (*), deg v1 + deg vn ≥ n, and the pigeon hole principle implies that for some i in the range 2 ≤ i ≤ n − 1, vi is adjacent to v1 and vi − 1 is adjacent to vn. But the cycle v1v2...vi − 1vnvn − 1...vi is then a Hamilton cycle. This contradiction yields the result.
Related results
Ore's theorem is a generalization of Dirac's theorem that, when each vertex has degree at least n/2, the graph is Hamiltonian. For, if a graph meets Dirac's condition, then clearly each pair of vertices has degrees adding to at least n.
In turn Ore's theorem is generalized by the Bondy–Chvátal theorem. One may define a closure operation on a graph in which, whenever two nonadjacent vertices have degrees adding to at least n, one adds an edge connecting them; if a graph meets the conditions of Ore's theorem, its closure is a complete graph. The Bondy–Chvátal theorem states that a graph is Hamiltonian if and only if its closure is Hamiltonian; since the complete graph is Hamiltonian, Ore's theorem is an immediate consequence.
Ore's theorem may also be strengthened to give a stronger condition than Hamiltonicity as a consequence of the degree condition in the theorem. Specifically, every graph satisfying the conditions of Ore's theorem is either a regular complete bipartite graph or is pancyclic (Bondy 1971).
References
- Bondy, J. A. (1971), "Pancyclic graphs I", Journal of Combinatorial Theory, Series B 11 (1): 80–84, doi:10.1016/0095-8956(71)90016-5.
- Ore, Ø. (1960), "Note on Hamiltonian circuits", American Mathematical Monthly 67 (1): 55, JSTOR 2308928.
Categories:- Extremal graph theory
- Theorems in discrete mathematics
Wikimedia Foundation. 2010.