Mautner's lemma

Mautner's lemma

In mathematics, Mautner's lemma in representation theory states that if G is a topological group and π a unitary representation of G on a Hilbert space H, then for any x in G, which has conjugates

yxy−1

converging to the identity element e, for a net of elements y, then any vector v of H invariant under all the π(y) is also invariant under π(x).

References

  • F. Mautner, Geodesic flows on symmetric Riemannian spaces (1957), Ann. Math. 65, 416-430

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”