Biharmonic equation

Biharmonic equation

In mathematics, the biharmonic equation is a fourth-order partial differential equation which arises in areas of continuum mechanics, including linear elasticity theory and the solution of Stokes flows. It is written as

: abla^4varphi=0

where abla^4 is the fourth power of the del operator and the square of the laplacian operator, and it is known as the biharmonic operator or the bilaplacian operator.

For example, in three dimensional cartesian coordinates the biharmonic equation has the form: {partial^4 varphiover partial x^4 } +{partial^4 varphiover partial y^4 } +{partial^4 varphiover partial z^4 }+ 2{partial^4 varphiover partial x^2partial y^2}+2{partial^4 varphiover partial y^2partial z^2}+2{partial^4 varphiover partial x^2partial z^2} = 0.

As another example, in "n"-dimensional Euclidean space, the following is true:

: abla^4 left({1over r} ight)= {3(15-8n+n^2)over r^5}

where

:r=sqrt{x_1^2+x_2^2+cdots+x_n^2}.

which, for "n=3" only, becomes the biharmonic equation.

A solution to the biharmonic equation is called a biharmonic function. Any harmonic function is biharmonic, but the converse is not always true.

In polar coordinates, the biharmonic equation will read:

:frac{1}{r} frac{partial}{partial r} left(r frac{partial}{partial r} left(frac{1}{r} frac{partial}{partial r} left(r frac{partial phi}{partial r} ight) ight) ight) + frac{2}{r^2} frac{partial^4 phi}{partial heta^2 partial r^2} + frac{1}{r^4} frac{partial^4 phi}{partial heta^4} - frac{2}{r^3} frac{partial^3 phi}{partial heta^2 partial r} + frac{4}{r^4} frac{partial^2 phi}{partial heta^2} = 0

ee also

* Harmonic function

References

* Eric W Weisstein, "CRC Concise Encyclopedia of Mathematics", CRC Press, 2002. ISBN 1-58488-347-2.
* S I Hayek, "Advanced Mathematical Methods in Science and Engineering", Marcel Dekker, 2000. ISBN 0-8247-0466-5.
*

External links

*
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • biharmonic equation — biharmoninė lygtis statusas T sritis fizika atitikmenys: angl. biharmonic equation vok. biharmonische Gleichung, f; Bipotentialgleichung, f rus. бигармоническое уравнение, n pranc. équation biharmonique, f …   Fizikos terminų žodynas

  • Equation biharmonique — Équation biharmonique En analyse, l équation biharmonique est une équation aux dérivées partielles d ordre 4, qui apparaît par exemple dans la théorie de l élasticité. L équation biharmonique pour une fonction φ s écrit : où est l opérateur… …   Wikipédia en Français

  • Biharmonic Bézier surface — A Biharmonic Bézier surface is a smooth polynomial surface which conforms to the biharmonic equation and has the same formulations as a Bézier surface. This formulation for Bézier surfaces was developed by Juan Monterde and Hassan Ugail. In order …   Wikipedia

  • Équation biharmonique — En analyse, l équation biharmonique est une équation aux dérivées partielles d ordre 4, qui apparaît par exemple dans la théorie de l élasticité. L équation biharmonique pour une fonction ϕ s écrit : où est l opérateur nabla et Δ l opérateur …   Wikipédia en Français

  • équation biharmonique — biharmoninė lygtis statusas T sritis fizika atitikmenys: angl. biharmonic equation vok. biharmonische Gleichung, f; Bipotentialgleichung, f rus. бигармоническое уравнение, n pranc. équation biharmonique, f …   Fizikos terminų žodynas

  • Linear elasticity — Continuum mechanics …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Fundamental solution — In mathematics, a fundamental solution for a linear partial differential operator L is a formulation in the language of distribution theory of the older idea of a Green s function. In terms of the Dirac delta function delta;( x ), a fundamental… …   Wikipedia

  • Dirichlet problem — In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet… …   Wikipedia

  • Stokes flow — An object moving through a gas or liquid experiences a force in direction opposite to its motion. Terminal velocity is achieved when the drag force is equal in magnitude but opposite in direction to the force propelling the object. Shown is a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”