Bauer-Fike theorem

Bauer-Fike theorem

In mathematics, the Bauer-Fike theorem is a standard result in the perturbation theory of the eigenvalue of a complex-valued diagonalizable matrix. In its substance, it states an absolute upper bound for the deviation of one perturbed matrix eigenvalue from a properly chosen eigenvalue of the exact matrix. Informally speaking, what it says is that "the sensitivity of the eigenvalues is estimated by the condition number of the matrix of eigenvectors".

Theorem (Friedrich L. Bauer, C.T.Fike - 1960)

Let Ainmathbb{C}^{n,n} be a diagonalizable matrix, and be Vinmathbb{C}^{n,n} the non singular eigenvector matrix such that A=VLambda V^{-1}. Be moreover mu an eigenvalue of the matrix A+delta A; then an eigenvalue lambdainsigma(A) exists such that:

:|lambda-mu|leqkappa_p (V)|delta A|_p

where kappa_p(V)=|V|_p|V^{-1}|_p is the usual condition number in p-norm.

Proof

If muinsigma(A), we can choose lambda=mu and the thesis is trivially verified (since kappa_p(V)geq 1).

So, be mu otinsigma(A). Then det(Lambda-mu I) e 0. mu being an eigenvalue of A+delta A, we have det(A+delta A-mu I)=0 and so

:0= det(V^{-1}) det(A+delta A-mu I) det(V)=det(Lambda+V^{-1}delta AV-mu I)=:=det(Lambda-mu I) det [(Lambda-mu I)^{-1}V^{-1}delta AV +I]

and, since det(Lambda-mu I) e 0 as stated above, we must have

:det [(Lambda-mu I)^{-1}V^{-1}delta AV +I] = 0

which reveals the value -1 to be an eigenvalue of the matrix (Lambda-mu I)^{-1}V^{-1}delta AV.

For each consistent matrix norm, we have |lambda|leq|A|, so, being all p-norms consistent, we can write:

:1leq|(Lambda-mu I)^{-1}V^{-1}delta AV|_pleq|(Lambda-mu I)^{-1}|_p|V^{-1}|_p|V|_p|delta A|_p=:=|(Lambda-mu I)^{-1}|_p kappa_p(V)|delta A|_p

But (Lambda-mu I)^{-1} being a diagonal matrix, the p-norm is easily computed, and yields:

:|(Lambda-mu I)^{-1}|_p = max_{|mathbf{x}|_p e 0} frac{|(Lambda-mu I)^{-1}mathbf{x}|_p}{|mathbf{x}|_p} =:=max_{lambdainsigma(A)}frac{1}

whence:

:min_{lambdainsigma(A)}|lambda- ilde{lambda}|leqkappa_p(V)frac{|mathbf{r}|_p}{|mathbf{ ilde{v|_p}.

The Bauer-Fike theorem, in both versions, yields an absolute bound. The following corollary, which, besides all the hypothesis of Bauer-Fike theorem, requires also the non-singularity of A, turns out to be useful whenever a relative bound is needed.

Corollary

Be Ainmathbb{C}^{n,n} a non-singular, diagonalizable matrix, and be Vinmathbb{C}^{n,n} the non singular eigenvector matrix such as A=VLambda V^{-1}. Be moreover mu an eigenvalue of the matrix A+delta A; then an eigenvalue lambdainsigma(A) exists such that:

:fracleqkappa_p (V)|A^{-1}delta A|_p

Remark

If A is normal, V is a unitary matrix, and |V|_2=|V^{-1}|_2=1, so that kappa_2(V)=1.

The Bauer-Fike theorem then becomes:

:existslambdainsigma(A): |lambda-mu|leq|delta A|_2

:(existslambdainsigma(A): |lambda- ilde{lambda}|leqfrac{|mathbf{r}|_2}{|mathbf{ ilde{v|_2} in the alternative formulation)

which obviously remains true if A is a Hermitian matrix. In this case, however, a much stronger result holds, known as the Weyl theorem.

References

# F. L. Bauer and C. T. Fike. "Norms and exclusion theorems". Numer. Math. 2 (1960), 137-141.

# S. C. Eisenstat and I. C. F. Ipsen. "Three absolute perturbation bounds for matrix eigenvalues imply relative bounds". SIAM Journal on Matrix Analysis and Applications Vol. 20, N. 1 (1998), 149-158


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Friedrich L. Bauer — Infobox Scientist image width = 150px name = Friedrich Ludwig Bauer image width yo ppl = caption = birth date = birth date and age|1924|06|10 birth place = flagicon|Germany Regensburg death date = death place = residence = citizenship =… …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”