Bethe-Bloch formula

Bethe-Bloch formula

The Bethe-Bloch formula (more precisely: Bethe formula, see below) describes the energy-loss by ionization of swift charged particles (protons, alpha particles, atomic ions, but not electrons) traversing matter.

Charged particles moving through matter interact with the electrons of atoms in the material. The interaction excites or ionizes the atoms. This leads to an energy loss of the traveling particle. The Bethe formula which was found by Hans Bethe in 1930, describes the energy loss per distance traveled (or the stopping power of the material traversed):

:- frac{dE}{dx} = frac{4 pi}{m_e c^2} cdot frac{nz^2}{eta^2} cdot left(frac{e^2}{4pivarepsilon_0} ight)^2 cdot left [ln left(frac{2m_e c^2 eta^2}{I cdot (1-eta^2)} ight) - eta^2 ight] (1)

where

Here, the electron density of the material can be calculated by n=frac{N_{A}cdot Zcdot ho}{A}, where ho is the density of the material, Z, A the atomic number and mass number, resp., and N_A the Avogadro number.

For low energies, i.e. for small (compared to "c") velocities of the particle ( eta ll 1), the energy loss according to formula (1) decreases approximately as 1/ v^2 with increasing energy, and reaches a minimum for approx. E = 3Mc^2, where M is the mass of the particle. For highly relativistic cases ( eta approx 1), the energy loss increases again, logarithmically; here, charged particles additionally experience energy loss due to the emission of bremsstrahlung.

Also, for higher projectile energies, the last term should be replaced by : frac{1}{2} ln left(frac{2m_e c^2 eta^2gamma^2 T_{max{I^2} ight) - eta^2where T_{max} = frac{2m_e c^2 eta^2gamma^2}{1+2gamma m_e/M + (m_e/M)^2} , which at low energy would reduce to 2m_e c^2 eta^2gamma^2, giving as expected the original low energy expression. [ [http://pdg.lbl.gov/2006/reviews/passagerpp.pdf Particle Data Group: passage of charged particles through matter, with a graph] ]

Felix Bloch has shown in 1933 that the mean ionization potential of atoms is approximately given by: I = (10eV) cdot Z (2)where Z is the atomic number of the atoms of the material. If this approximation is introduced into formula (1) above, one obtains an expression which is often called "Bethe-Bloch formula". But since we have now more accurate tables of I as a function of Z, (for example, in ICRU Report 49 of the International Commission on Radiation Units and Measurements, 1993), the use of such a table will yield better results than the use of formula (2).

The problem of nomenclature

In describing programs PSTAR and ASTAR (for protons and alpha particles), the National Institute of Standards and Technology (USA) (www.physics.nist.gov/PhysRefData/Star/Text/programs.html) calls formula (1) "Bethe's stopping power formula", which is a reasonable designation.

On the other hand, in the newest Review of Particle Physics (W.-M. Yao et al., Journal of Physics G 33 (2006) 1), the formula is paradoxically called "Bethe-Bloch equation", even though Bloch's expression (2) does not appear in the formula.

ee also

* Stopping power (particle radiation)
* Bethe formula
* Hans Bethe
* Felix Bloch
* Bragg peak

Notes

External links

* [http://www3.interscience.wiley.com/cgi-bin/abstract/112486659/ABSTRACT? Original publication of the Bethe equation, 1930 (Annalen der Physik)]
* [http://pdg.lbl.gov/2006/reviews/passagerpp.pdf Particle Data Group: passage of charged particles through matter, with a graph]
* [http://www.kvi.nl/~wortche/detectors2003/detectors2003_files/interaction.pdf Detector course notes]
* [http://www.jlab.org/~johna/SIMC_documents/documents/eloss.ps JLAB: Calculation of Energy Losses in Hall C's Replay Engine]
* [http://www.physics.nist.gov/PhysRefData/Star/Text/programs.html stopping power for protons and alpha particles]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Bethe-Bloch-Formel — Die Bethe Formel gibt den Energieverlust pro Weglängeneinheit an, den schnelle geladene Teilchen (Protonen, Alphateilchen, Atomionen, aber nicht Elektronen[Anmerkung 1][1]) beim Durchgang durch Materie erleiden (bzw. das Bremsvermögen des… …   Deutsch Wikipedia

  • Bethe-Bloch-Gleichung — Die Bethe Formel gibt den Energieverlust pro Weglängeneinheit an, den schnelle geladene Teilchen (Protonen, Alphateilchen, Atomionen, aber nicht Elektronen[Anmerkung 1][1]) beim Durchgang durch Materie erleiden (bzw. das Bremsvermögen des… …   Deutsch Wikipedia

  • Bethe formula — The Bethe formula describes the energy loss per distance travelled of swift charged particles (protons, alpha particles, atomic ions, but not electrons) traversing matter (or, alternatively, the stopping power of the material). The non… …   Wikipedia

  • Bethe-Formel — Die Bethe Formel gibt den Energieverlust pro Weglängeneinheit an, den schnelle geladene Teilchen (Protonen, Alphateilchen, Atomionen, aber nicht Elektronen[Anmerkung 1][1]) beim Durchgang durch Materie erleiden (bzw. das Bremsvermögen des… …   Deutsch Wikipedia

  • Formule De Bethe — La formule de Bethe décrit la perte d énergie de particules chargées rapides (protons, particules alpha, ions atomiques mais pas électrons) en traversant la matière (ou le pouvoir d arrêt du matériau). La version non relativiste fut créée par… …   Wikipédia en Français

  • Formule de bethe — La formule de Bethe décrit la perte d énergie de particules chargées rapides (protons, particules alpha, ions atomiques mais pas électrons) en traversant la matière (ou le pouvoir d arrêt du matériau). La version non relativiste fut créée par… …   Wikipédia en Français

  • Bragg peak — The Bragg curve plots the energy loss of ionizing radiation during its travel through matter. For protons, α rays, and other ion rays, there is a pronounced peak in the curve immediately before the particles come to rest. This is called Bragg… …   Wikipedia

  • Richard Feynman — Feynman redirects here. For other uses, see Feynman (disambiguation). Richard P. Feynman Richard Feynman at Fermilab Bor …   Wikipedia

  • radiation — radiational, adj. /ray dee ay sheuhn/, n. 1. Physics. a. the process in which energy is emitted as particles or waves. b. the complete process in which energy is emitted by one body, transmitted through an intervening medium or space, and… …   Universalium

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”