Quadratrix

Quadratrix

In mathematics, a quadratrix (from the Latin word "quadrator," squarer) is a curve having ordinates which are a measure of the area (or quadrature) of another curve. The two most famous curves of this class are those of Dinostratus and E. W. Tschirnhausen, which are both related to the circle.

The quadratrix of Dinostratus (also called the "quadratrix of Hippias") was well known to the ancient Greek geometers, and is mentioned by Proclus, who ascribes the invention of the curve to a contemporary of Socrates, probably Hippias of Elis. Dinostratus, a Greek geometer and disciple of Plato, discussed the curve, and showed how it affected a mechanical solution of squaring the circle. Pappus, in his "Collections", treats its history, and gives two methods by which it can be generated.
# Let a helix be drawn on a right circular cylinder; a screw surface is then obtained by drawing lines from every point of this spiral perpendicular to its axis. The orthogonal projection of a section of this surface by a plane containing one of the perpendiculars and inclined to the axis is the quadratrix.
# A right cylinder having for its base an Archimedean spiral is intersected by a right circular cone which has the generating line of the cylinder passing through the initial point of the spiral for its axis. From every point of the curve of intersection, perpendiculars are drawn to the axis. Any plane section of the screw (plectoidal of Pappus) surface so obtained is the quadratrix.

Another construction is as follows. ABC is a quadrant in which the line AB and the arc AC are divided into the same number of equal parts. Radii are drawn from the centre of the quadrant to the points of division of the arc, and these radii are intersected by the lines drawn parallel to BC and through the corresponding points on the radius AB. The locus of these intersections is the quadratrix.

The cartesian equation to the curve is y = x cot 2a' which shows that the curve is symmetrical about the axis of y, and that it consists of a central portion flanked by infinite branches. The asymptotes are x = 2na, n being an integer. The intercept on the axis of y is 2a/7r; therefore, if it were possible to accurately construct the curve, the quadrature of the circle would be effected. The curve also permits the solution of the problems of duplicating a cube and trisecting an angle.

The quadratrix of Tschirnhausen is constructed by dividing the arc and radius of a quadrant in the same number of equal parts as before. The mutual intersections of the lines drawn from the points of division of the arc parallel to AB, and the lines drawn parallel to BC through the points of division of AB, are points on the quadratrix. The cartesian equation is y=a cos 2a. The curve is periodic, and cuts the axis of x at the points x= (2n - I)a, n being an integer; the maximum values of y are =a. Its properties are similar to those of the quadratrix of Dinostratus.

References

*1911

External links

* [http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Curves/Quadratrix.html Quadratrix of Hippias] at the MacTutor archive.
* [http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=1207&bodyId=1353 Hippias' Quadratrix of Hippias] at [http://mathdl.maa.org/convergence/1/ Convergence]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Quadratrix — Quadratrix, Name mehrerer Kurven, die zur Quadratur des Kreises dienen. Die Quadratur des Dinostratus wird erzeugt durch den Schnittpunkt einer Geraden, die sich um einen Punkt gleichmäßig dreht, und einer Geraden, die in der Anfangslage… …   Lexikon der gesamten Technik

  • Quadratrix — Quadratrix, a) Q. des Dinostratos ist der geometrische Ort des Scheitels eines Dreiecks ABC, in welchem sich ein Abschnitt der Grundlinie BN, welchen der Fußpunkt des auf den Scheitel gefällten Perpendikels bestimmt, zur ganzen Grundlinie AB… …   Pierer's Universal-Lexikon

  • Quadratrix —   [lateinisch] die, , eine von Hippias von Elis eingeführte transzendente Kurve, die zur Dreiteilung des Winkels und zur Konstruktion der Kreiszahl π (und damit zur Quadratur des Kreises; erstmals bei Deinostratos, 4 …   Universal-Lexikon

  • Quadratrix — Quad*ra trix, n.; pl. { trixes}, or { trices}. [NL.] (Geom.) A curve made use of in the quadrature of other curves; as the quadratrix, of Dinostratus, or of Tschirnhausen. [1913 Webster] …   The Collaborative International Dictionary of English

  • Quadrātrix — (lat.), s. Kreis, S. 626, 1. Spalte …   Meyers Großes Konversations-Lexikon

  • Quadratrix — Als Quadratrix (auch Quadratix) bezeichnet man Kurven, mit deren Hilfe ein zu einem gegebenen Kreis flächengleiches Quadrat konstruiert werden kann. Neben der Quadratrix selbst beziehungsweise einem Gerät, das sie zeichnet, sind dabei… …   Deutsch Wikipedia

  • Quadratrix — Qua|dra|trix die; , ...trizes [...tse:s] <aus gleichbed. nlat. quadratrix, Gen. quadratricis> Bez. für jede zur geometrischen Quadratur des Kreises od. anderer Figuren verwendete Hilfskurve (Math.) …   Das große Fremdwörterbuch

  • Quadratrix des Hippias — Quadratrix (rot); Momentaufnahme für F und E bei sechs Zehnteln ihres Weges Die Quadratrix oder Trisektrix des Hippias (auch Quadratrix des Dinostratos) ist eine kinematisch erzeugte Kurve, deren Erfindung der Überlieferung nach dem griechischen… …   Deutsch Wikipedia

  • quadratrix — noun A curve having ordinates which are a measure of the area (or quadrature) of another curve …   Wiktionary

  • quadratrix — quadrāˈtrix noun A curve by which a curved figure (such as a circle) may be squared • • • Main Entry: ↑quadrat …   Useful english dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”