Affine involution

Affine involution

In Euclidean geometry, of special interest are involutions which are linear or affine transformations over the Euclidean space R"n". Such involutions are easy to characterize and they can be described geometrically.

Linear involutions

To give a linear involution is the same as giving a square matrix "A" such that:A^2=I quadquadquadquad (1)where "I" is the identity matrix.

It is a quick check that a square matrix "D" that has zero off the main diagonal and ±1 on the diagonal, that is, a signature matrix of the form

:D=egin{pmatrix}pm 1 & 0 & cdots & 0 & 0 \0 & pm 1 & cdots & 0 & 0 \vdots & vdots & ddots & vdots & vdots \0 & 0 & cdots & pm 1 & 0 \0 & 0 & cdots & 0 & pm 1 end{pmatrix}

satisfies (1), i.e. is the matrix of a linear involution. It turns out that all the matrices satisfying (1) are of the form :"A"="P" −1"DP", where "P" is invertible and "D" is as above. That is to say, the matrix of any linear involution is of the form "D" up to a similarity. Geometrically this means that any linear involution can be obtained by taking oblique reflections against any number from 0 through "n" hyperplanes going through the origin. (The term "oblique reflection" as used here includes ordinary reflections.)

One can easily verify that "A" represents a linear involution if and only if "A" has the form:"A = ±(2P - I)" for a linear projection "P".

Affine involutions

If "A" represents a linear involution, then "x"→"A"("x"−"b")+"b" is an affine involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through "n" hyperplanes going through a point "b".

Affine involutions can be categorized by the dimension of the affine space of fixed points; this corresponds to the number of values 1 on the diagonal of the similar matrix "D" (see above), i.e., the dimension of the eigenspace for eigenvalue 1.

The affine involutions in 3D are:
* the identity
* the oblique reflection in respect to a plane
* the oblique reflection in respect to a line
* the reflection in respect to a point.

Isometric involutions

In the case that the eigenspace for eigenvalue 1 is the orthogonal complement of that for eigenvalue −1, i.e., every eigenvector with eigenvalue 1 is orthogonal to every eigenvector with eigenvalue −1, such an affine involution is an isometry. The two extreme cases for which this always applies are the identity function and inversion in a point.

The other involutive isometries are inversion in a line (in 2D, 3D, and up; this is in 2D a reflection, and in 3D a rotation about the line by 180°), inversion in a plane (in 3D and up; in 3D this is a reflection in a plane), inversion in a 3D space (in 3D: the identity), etc.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Involution (mathematics) — In mathematics, an involution, or an involutary function, is a function that is its own inverse, so that: f ( f ( x )) = x for all x in the domain of f . General propertiesAny involution is a bijection.The identity map is a trivial example of an… …   Wikipedia

  • Application Affine — C’est Euler, en 1748, qui est à l’origine du terme « transformation affine », car dit il, « deux courbes images l’une de l’autre par une telle transformation présentent entre elles une certaine affinité ». De nos jours, une… …   Wikipédia en Français

  • Application affine —  Ne pas confondre avec la transformation géométrique appelée « affinité ». En géométrie, une application affine est une application entre deux espaces affines compatible avec leur structure, c est à dire qui envoie les droites,… …   Wikipédia en Français

  • Transformation affine — Application affine C’est Euler, en 1748, qui est à l’origine du terme « transformation affine », car dit il, « deux courbes images l’une de l’autre par une telle transformation présentent entre elles une certaine affinité ».… …   Wikipédia en Français

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • Symmetry — For other uses, see Symmetry (disambiguation) …   Wikipedia

  • Involutory matrix — In mathematics, an involutory matrix is a matrix that is its own inverse. That is, matrix A is an involution iff A2 = I.One of the three classes of elementary matrix is involutory, namely the row interchange elementary matrix . A special case of… …   Wikipedia

  • Reflection symmetry — Reflection symmetry, line symmetry, mirror symmetry, mirror image symmetry, or bilateral symmetry is symmetry with respect to reflection.In 2D there is an axis of symmetry, in 3D a plane of symmetry. An object or figure which is indistinguishable …   Wikipedia

  • Inversion in a point — In Euclidean geometry, the inversion of a point X in respect to a point P is a point X * such that P is the midpoint of the line segment with endpoints X and X *. In other words, the vector from X to P is the same as the vector from P to X *.The… …   Wikipedia

  • Forme hermitienne — Cet article concerne le cas général abstrait. Pour un cas plus élémentaire, voir Forme sesquilinéaire complexe. En mathématiques, une forme hermitienne est une fonction de deux variable sur un espace vectoriel sur un corps relativement à une… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”