Strongly correlated material

Strongly correlated material

Strongly correlated materials are a wide class of materials that show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions or half-metallicity.

Electron correlations are those effects which are not captured by Hartree-Fock theory. If these effects are large and particularly when Hartree-Fock gives a qualitatively incorrect results one refers to a material as strongly correlated.

The most commonly known strongly correlated materials are high-temperature superconductors which exhibit interesting conductive properties.

Many, if not most, transition metal oxides belong into this class which may be subdivided according to their behavior, e.g. high Tc superconductors, spintronic materials, Mott insulators, spin Peierls materials, heavy fermion materials, quasi low-dimensional materials etc. The single most intensively studied effect is probably high temperature superconductivity in doped cuprates, e.g. La2-xSrxCuO4. Other ordering or magnetic phenomena and temperature induced phase transitions in many transition metal oxides are also gathered under the term strongly correlated materials.

Typically, strongly correlated materials have incompletely filled d or f electron shells with narrow bands. One can no longer consider any electron in the material as being in a 'sea' of the averaged motion of the others. Each single electron has a complex influence on its neighbors.

The term "strong correlation" refers to behavior of electrons in solids that is not well-described (often not even in a qualitatively correct manner) by simple one-electron theories such as the local density approximation (LDA) of density functional theory or Hartree-Fock theory. For instance, the seemingly simple material NiO has a partially filled 3d-band (the Ni atom has 8 of 10 possible 3d-electrons) and therefore would be expected to be a good conductor. However, strong Coulomb repulsion (a correlation effect) between d-electrons makes NiO instead a wide band gap insulator. Thus, "strongly correlated materials" have electronic structures that are neither simply free-electron like nor completely ionic, but a mixture of both.

Extensions to LDA (LDA+U, GGA, SIC, GW, etc.) as well as simplified model Hamiltonians (e.g. Hubbard-like models) have been proposed and developed in order to describe phenomena that are due to strong electron correlation.

Experimentally, high-energy electron spectroscopies, and more recently resonant inelastic (hard and soft) x-ray scattering and neutron spectroscopy have been used to study the electronic and magnetic structure of strongly correlated materials. Spectral signatures seen by these techniques that are not explained by one-electron density of states are often related to strong correlation effects. The experimentally obtained spectra can be compared to predictions of certain models or may be used to establish constraints to the parameter sets. One has for instance established a classification scheme of transition metal oxides within the so-called Zaanen-Sawatzky-Allen diagram.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Tight binding — Electronic structure methods Tight binding Nearly free electron model Hartree–Fock method Modern valence bond Generalized valence bond Møller–Plesset perturbat …   Wikipedia

  • Band gap — This article is about solid state physics. For voltage control circuitry in electronics, see Bandgap voltage reference. In solid state physics, a band gap, also called an energy gap or bandgap, is an energy range in a solid where no electron… …   Wikipedia

  • Список лауреатов медали Румфорда — Не следует путать с Премией Румфорда[ru] …   Википедия

  • Electronic correlation — refers to the interaction between electrons in a quantum system whose electronic structure is being considered. The term correlation stems from mathematical statistics and means that two distribution functions, f and g , are not independent of… …   Wikipedia

  • Resonance Raman spectroscopy — Resonance Raman (RR) spectroscopy is a specialized implementation of the more general Raman spectroscopy. Overview As in Raman spectroscopy, RR spectroscopy provides information about the vibrations of molecules, and can also be used for… …   Wikipedia

  • Sankar Das Sarma — Infobox Person name = Sankar Das Sarma caption = birth date = 1953 birth place = Kolkata, India death date = death place = other names = known for = occupation = Theoretical Physicist nationality =flagicon|USA United StatesSankar Das Sarma is a… …   Wikipedia

  • Jan Zaanen — is Professor of Theoretical Physics at Leiden University, The Netherlands. He is best known for his contributions to the understanding of the quantum physics of the electrons in strongly correlated material, and in particular High temperature… …   Wikipedia

  • Life Sciences — ▪ 2009 Introduction Zoology       In 2008 several zoological studies provided new insights into how species life history traits (such as the timing of reproduction or the length of life of adult individuals) are derived in part as responses to… …   Universalium

  • animal — animalic /an euh mal ik/, animalian /an euh may lee euhn, mayl yeuhn/, adj. /an euh meuhl/, n. 1. any member of the kingdom Animalia, comprising multicellular organisms that have a well defined shape and usually limited growth, can move… …   Universalium

  • hydrosphere — /huy dreuh sfear /, n. the water on or surrounding the surface of the globe, including the water of the oceans and the water in the atmosphere. [1885 90; HYDRO 1 + SPHERE] * * * Discontinuous layer of water at or near the Earth s surface. It… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”