Alexander's trick

Alexander's trick

Alexander's trick, also known as the Alexander trick, is a basic result in geometric topology, named after J. W. Alexander.

tatement

Two homeomorphisms of the "n"-dimensional ball D^n which agree on the boundary sphere S^{n-1}, are isotopic.

More generally, two homeomorphisms of "D""n" that are isotopic on the boundary, are isotopic.

Proof

Base case: every homeomorphism which fixes the boundary is isotopic to the identity relative to the boundary.

If fcolon D^n o D^n satisfies f(x) = x mbox{ for all } x in S^{n-1}, then an isotopy connecting "f" to the identity is given by: J(x,t) = egin{cases} tf(x/t), & mbox{if } 0 leq ||x|| < t, \ x, & mbox{if } t leq ||x|| leq 1. end{cases}

Visually, you "straighten it out" from the boundary, squeezing f down to the origin. William Thurston calls this "combing all the tangles to one point".

The subtlety is that at t=0, f "disappears": the germ at the origin "jumps" from an infinitely stretched version of f to the identity. Each of the steps in the homotopy could be smoothed (smooth the transition), but the homotopy (the overall map) has a singularity at (x,t)=(0,0). This underlines that the Alexander trick is a PL construction, but not smooth.

General case: isotopic on boundary implies isotopic

Now if f,gcolon D^n o D^n are two homeomorphisms that agree on S^{n-1}, then g^{-1}f is the identity on S^{n-1}, so we have an isotopy J from the identity to g^{-1}f. The map gJ is then an isotopy from g to f.

Radial extension

Some authors use the term "Alexander trick" for the statement that every homeomorphism of S^{n-1} can be extended to a homeomorphism of the entire ball D^n.

However, this is much easier to prove than the result discussed above: it is called radial extension (or coning) and is also true piecewise-linearly, but not smoothly.

Concretely, let fcolon S^{n-1} o S^{n-1} be a homeomorphism, then: Fcolon D^n o D^n mbox{ with } F(rx) = rf(x) mbox{ for all } r in [0,1] mbox{ and } x in S^{n-1}defines a homeomorphism of the ball.

Exotic spheres

The failure of smooth radial extension and the success of PL radial extensionyield exotic spheres via twisted spheres.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Alexander Skarsgård — Nombre real Alexander Johan Hjalmar Skarsgård Nacimiento 25 de agosto de 1976 (35 años) …   Wikipedia Español

  • Alexander Rondón — Nombre Alexander José Rondón Heredia Apodo Pequeño Rondón, São Pequenho …   Wikipedia Español

  • Alexander Grothendieck — Alexander Grothendieck, 1970 Alexander Grothendieck (* 28. März 1928 in Berlin) ist ein deutschstämmiger französischer Mathematiker. Er ist Begründer einer eigenen Schule der algebraischen Geometrie, deren Entwicklung er in den 1960er Jahren… …   Deutsch Wikipedia

  • Alexander Mogilny — Born February 18, 1969 ( …   Wikipedia

  • Alexander Skarsgård — En 2008 Données clés Nom de naissance …   Wikipédia en Français

  • Alexander Chaplin — Alexander Chaplin, birth name Alexander Gaberman, (born 20 March, 1971) is an American actor. Chaplin s most prominent role was that of speechwriter James Hobert on the sitcom Spin City .As with the rest of the Spin City main cast, Chaplin has… …   Wikipedia

  • Alexander Harris — Personnage de fiction apparaissant dans Buffy contre les vampires …   Wikipédia en Français

  • Alexander de Cova — (* 7. November 1964 in München) ist ein deutscher Zauberkünstler. Bekannt geworden ist er im deutschsprachigen Raum durch seine zahlreichen Bücher, Lehr DVDs und Seminare zum Erlernen der Zauberkunst.[1] Inhaltsverzeichnis 1 Biographie 2 Werke… …   Deutsch Wikipedia

  • Alexander Ovechkin — Ovechkin redirects here. For the Russian road bicycle racer, see Artem Ovechkin. Alexander Ovechkin …   Wikipedia

  • Alexander Semin — Infobox Ice Hockey Player team=Washington Capitals former teams = league = NHL position = Left wing shoots = Right height ft = 6 height in = 2 weight lb = 205 nickname = nationality = Russia birth date = birth date and age|1984|3|3 birth place =… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”