- Freezing
:"For freezing as a method of food preservation, see
frozen food . For a TV series of the same name, seeFreezing (TV series) . For freezing in terms of computers, seehang (computing) "In
physics andchemistry ,freezing is the process whereby aliquid turns to asolid when cold enough. The freezing point is thetemperature at which this happens.Melting , the process of turning a solid to a liquid, is almost the exact opposite of freezing. All known liquids undergo freezing when the temperature is lowered with the sole exception ofhelium , which remains fluid atabsolute zero and can only be solidified under pressure. For most substances, the melting and freezing points are the same temperature, however, certain substances possess differing solid-liquid transition temperatures. For example,agar melts at 85 °C (185 °F) and solidifies from 31 °C to 40 °C (89.6 °F to 104 °F); this process is known asthermal hysteresis .Crystallization
Most liquids freeze by
crystallization , formation of crystalline solid from the uniform liquid. This is a first-order thermodynamicphase transition , which means that as long as solid and liquid coexist, the equilibrium temperature of the system remains constant and equal to themelting point . Crystallization consists of two major events,nucleation andcrystal growth . Nucleation is the step where the molecules start to gather into clusters, on thenanometer scale, arranging in a defined and periodic manner that defines thecrystal structure . The crystal growth is the subsequent growth of the nuclei that succeed in achieving the critical cluster sizeno no noupercooling
In spite of the
second law of thermodynamics , crystallization of pure liquids usually begins at lower temperature than themelting point , due to highactivation energy of homogeneous nucleation. The creation of a nucleus implies the formation of an interface at the boundaries of the new phase. Some energy is expended to form this interface, based on thesurface energy of each phase. If a hypothetical nucleus is too small, the energy that would be released by forming its volume is not enough to create its surface, and nucleation does not proceed. Freezing does not start until the temperature is low enough to provide enough energy to form stable nuclei. In presence of irregularities on the surface of the containing vessel, solid or gaseous impurities, pre-formed solid crystals, or other nucleators, heterogeneous nucleation may occur, where some energy is released by the partial destruction of the previous interface, rising the supercooling point to be near or equal to the melting point. The melting point ofwater at 1 atmosphere of pressure is very close to 0 °C (32 °F, 273.15 K), and in the presence of nucleating substances the freezing point of water is close to the melting point, but in the absence of nucleators water can super cool to −42 °C (−43.6 °F, 231 K) before freezing. Under high pressure (2,000 atmospheres) water will super cool to as low as −70°C (−94°F, 203 K) before freezing [ citation | title=Homogeneous nucleation of supercooled water: Results from a new equation of state | first1=CA | last1=Jeffery | first2=PH | last2=Austin | journal=Journal of Geophysical Research | volume=102 | issue=D21 | pages= pages 25269–25280 | date=November, 1997 | doi=10.1029/97JD02243 | url=http://adsabs.harvard.edu/abs/1997JGR...10225269J | author=Jeffery, C. A. ] .Vitrification
Certain materials, such as
glass orglycerol , may harden without crystallizing; these are calledamorphous solid s. Amorphous materials as well as some polymers do not have a true freezing point as there is no abrupt phase change at any specific temperature. Instead, there is a gradual change in their viscoelastic properties over a range of temperatures. Such materials are characterized by aglass transition temperature which may be roughly defined as the "knee" point of the material's density vs. temperature graph.Freezing of biological fluids
Most living organisms accumulate
cryoprotectant s such as anti-nucleating proteins, polyols, and glucose to protect themselves against frost damage by sharp ice crystals. Most plants, in particular, can safely reach temperatures of −4°C to −12°C. Certain bacteria, notably "Pseudomonas syringae ", produce specialized proteins that serve as potent ice nucleators, which they use to force ice formation on the surface of various fruits and plants at about −2°C [cite journal | author=Maki LR, Galyan EL, Chang-Chien MM, Caldwell DR | title=Ice nucleation induced by pseudomonas syringae | journal=Applied Microbiology | volume=28 | issue=3 | year=1974 | pages=456–459 |pmid=4371331 ] . The freezing causes injuries in the epithelia and makes the nutrients in the underlying plant tissues available to the bacteria. [cite journal | author=Zachariassen KE, Kristiansen E | title=Ice nucleation and antinucleation in nature | journal=Cryobiology | volume=41 | issue=4 | year=2000 | pages=257–279 |pmid=11222024 | doi=10.1006/cryo.2000.2289]Food preservation
Freezing is a common method of
food preservation which slows both food decay and the growth ofmicro-organism s. Besides the effect of lower temperatures onreaction rate s, freezing makes water less available for bacterial growth.References
See also
*
Flash freezing
*Frost
*Melting point , for a more detailed description of the physical process.
*Mpemba effect
*Nucleation
*Phase diagram
*Phase transition
*Supercooling External links
* [http://www.mpc.ameslab.gov/services/metal_casting_video.html Video of an intermetallic compound solidifying/freezing]
Wikimedia Foundation. 2010.