Dielectric reluctance

Dielectric reluctance

Dielectric reluctance is a scalar measurement of a passive dielectric circuit (or element within that circuit) dependent on voltage and electric induction flux, and this is determined by deriving the ratio of their amplitudes. The units of dielectric reluctance are F−1 (inverse farads—see daraf) [Ref. 1-3].

z_\epsilon = \frac{U}{Q} = \frac{U_m}{Q_m}

As seen above, dielectric reluctance is represented as lowercase z epsilon.

For a dielectric in a dielectric circuit to have no energy losses, the imaginary part of its dielectric reluctance is zero. This constitutes a lossless "resistance" to electric induction flux, and is therefore real, not complex. This formality is similar to Ohm's Law for a resistive circuit. In dielectric circuits, a dielectric material has a "lossless" dielectric reluctance equal to:

z_\epsilon = \frac{1}{\epsilon \epsilon_0}\frac{l}{S}

Where:

  • l is the circuit length
  • S is the cross-section of the circuit element
  • \epsilon \epsilon_0 is the dielectric permeability

See also

References

  1. Hippel A. R., Dielectrics and Waves. New York: John Wiley, 1954.
  2. Popov V. P., The Principles of Theory of Circuits. – M.: Higher School, 1985, 496 p. (In Russian).
  3. Küpfmüller K. Einführung in die theoretische Elektrotechnik, Springer-Verlag, 1959.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Dielectric complex reluctance — is a scalar measurement of a passive dielectric circuit (or element within that circuit) dependent on sinusoidal voltage and sinusoidal electric induction flux, and this is determined by deriving the ratio of their complex effective amplitudes.… …   Wikipedia

  • Magnetic reluctance — Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is analogous to resistance in an electrical circuit, but rather than dissipating magnetic energy it stores magnetic energy. In likeness to the …   Wikipedia

  • Constitutive equation — Many defining equations are in the form of a constitutive equation, since parameters of a property or effect associated matter are characteristic to the substance in question. A large number of other defining equations not specifically… …   Wikipedia

  • Jagadish Chandra Bose — Infobox Scientist name = জগদীশ চন্দ্র বসু Jagadish Chandra Bose caption = Jagadish Chandra Bose in his lab birth date = birth date|1858|11|30|df=y birth place = Mymensingh, East Bengal (now Bangladesh), British India death date = death date and… …   Wikipedia

  • Permeability (electromagnetism) — Magnetic Circuits Conventional Magnetic Circuits Magnetomotive force Magnetic flux Φ Magnetic reluctance Phasor Magnetic Circuits Complex reluctance Zμ …   Wikipedia

  • Copper wire and cable — Copper has been used in electric wiring since the invention of the electromagnet and the telegraph in the 1820s.[1][2] The invention of the telephone in 1876 proved to be another early boon for copper wire.[3] Today, despite competition from… …   Wikipedia

  • Brushed DC electric motor — A brushed DC motor is an internally commutated electric motor designed to be run from a direct current power source. Contents 1 Simple two pole DC motor 2 The commutating plane 2.1 Compensation for stator field distortion …   Wikipedia

  • Oliver Heaviside — Heaviside redirects here. For other uses, see Heaviside (disambiguation). Oliver Heaviside Portrait by Francis Edwin Hodge …   Wikipedia

  • Flyback transformer — A flyback or line output transformer (FBT or LOPT) is a type of transformer used in the power supply of a cathode ray tube that generates the high voltage needed to drive a CRT type monitor, and can also be used to power a plasma globe. It… …   Wikipedia

  • electromagnetic radiation — Physics. radiation consisting of electromagnetic waves, including radio waves, infrared, visible light, ultraviolet, x rays, and gamma rays. [1950 55] * * * Energy propagated through free space or through a material medium in the form of… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”