Lilliefors test

Lilliefors test

In statistics, the Lilliefors test, named after Hubert Lilliefors, professor of statistics at George Washington University, is an adaptation of the Kolmogorov-Smirnov test. It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify "which" normal distribution, i.e. does not specify the expected value and variance.

The test proceeds as follows:

1. First estimate the population mean and population variance based on the data.

2. Then find the maximum discrepancy between the empirical distribution function and the cumulative distribution function (CDF) of the normal distribution with the estimated mean and estimated variance. Just as in the Kolmogorov-Smirnov test, this will be the test statistic.

3. Finally, we confront the question of whether the maximum discrepancy is large enough to be statistically significant, thus requiring rejection of the null hypothesis. This is where this test becomes more complicated than the Kolmogorov-Smirnov test. Since the hypothesized CDF has been moved closer to the data by estimation based on those data, the maximum discrepancy has been made smaller than it would have been if the null hypothesis had singled out just one normal distribution. Thus we need the "null distribution" of the test statistic, i.e. its probability distribution assuming the null hypothesis is true. This is the Lilliefors distribution. To date, tables for this distribution have been computed only by Monte Carlo methods.

The test is relatively weak and a large amount of data is typically required to reject the normality hypothesis. A more sensitive test is the Jarque-Bera test which is based on a combination of the estimates of skewness and kurtosis. The Jarque-Bera test is therefore highly attentive to outliers, which the Lilliefors is not.

There is an extensive literature on normality testing, but as a practical matter many experienced data analysts sidestep formal testing and assess the feasibility of a normal model by using a graphical tool such as a Q-Q plot.

External links

* [http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm US NIST Handbook of Statistics]

References

* Lilliefors, H. (June 1967), "On the Kolmogorov-Smirnov test for normality with mean and variance unknown", "Journal of the American Statistical Association", Vol. 62. pp. 399-402.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Lilliefors-Test — Der Lilliefors Test beziehungsweise Kolmogorow Smirnow Lilliefors Test ist ein statistischer Test, mit dem die Häufigkeitsverteilung der Daten einer Stichprobe auf Abweichungen von der Normalverteilung untersucht werden kann. Er basiert auf einer …   Deutsch Wikipedia

  • Test de normalité — En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d adéquation (ou tests d ajustement, tests permettant de comparer des …   Wikipédia en Français

  • Test (statistique) — Pour les articles homonymes, voir Test. En statistiques, un test d hypothèse est une démarche consistant à rejeter ou à ne pas rejeter (rarement accepter) une hypothèse statistique, appelée hypothèse nulle, en fonction d un jeu de données… …   Wikipédia en Français

  • Kolmogorov-Smirnov test — In statistics, the Kolmogorov ndash;Smirnov test (also called the K S test for brevity) is a form of minimum distance estimation used as a nonparametric test of equality of one dimensional probability distributions used to compare a sample with a …   Wikipedia

  • Hubert Lilliefors — Hubert Whitman Lilliefors (1928(?) ndash; 2008) was an American statistician, noted for his introduction of the Lilliefors test. He was a professor of statistics at George Washington University for 39 years …   Wikipedia

  • Anderson-Darling-Test — Der Anderson Darling Test beziehungsweise Anderson Darling Anpassungstest ist ein statistischer Test, mit dem festgestellt werden kann, ob die Häufigkeitsverteilung der Daten einer Stichprobe von einer vorgegebenen hypothetischen… …   Deutsch Wikipedia

  • Normality test — In statistics, normality tests are used to determine whether a data set is well modeled by a normal distribution or not, or to compute how likely an underlying random variable is to be normally distributed. More precisely, they are a form of… …   Wikipedia

  • Kolmogorow-Smirnow-Test — Der Kolmogorow Smirnow Test (KS Test) (nach Andrei Nikolajewitsch Kolmogorow und Wladimir Iwanowitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen. Mit seiner Hilfe kann anhand von… …   Deutsch Wikipedia

  • Cramér-von-Mises-Test — Der Cramér von Mises Test ist ein statistischer Test, mit dem untersucht werden kann, ob die Häufigkeitsverteilung der Daten einer Stichprobe von einer vorgegebenen hypothetischen Wahrscheinlichkeitsverteilung abweicht (Ein Stichproben Fall),… …   Deutsch Wikipedia

  • Tests de normalité — Test de normalité En statistiques, les tests de normalité permettent de vérifier que des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d adéquation (ou tests d ajustement, tests… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”