- Logics for computability
Logics for computability are formulations of logic whichcapture some aspect of
computability as a basic notion. This usually involves a mixof speciallogical connective s as well assemantics which explains how the logic is to be interpreted in a computational way.Probably the first formal treatment of logic for computability is the "realizability interpretation" by
Stephen Kleene in1945 , who gave an interpretation of intuitionistic number theory in terms ofTuring machine computations. His motivation was to make precise the "Heyting-Brouwer-Kolmogorov (BHK) interpretation" of intuitionism, according to which proofs of mathematical statements are to be viewed as constructive procedures.With the rise of many other kinds of logic, such as
modal logic andlinear logic , and novel semantic models, such asgame semantics , logics for computability have been formulated in several contexts. Here we mention two.Modal logic for computability
Kleene's original realizability interpretation has received much attention among those who study connections between computability and logic. It was extended to full higher-order intuitionistic logic by
Martin Hyland in1982 who constructed theeffective topos . In2002 ,Steven Awodey ,Lars Birkedal , andDana Scott formulated a modal logic for computability which extended the usual realizability interpretation with two modal operators expressing the notion of being "computably true".Japaridze's computability logic
"Computability Logic" is a proper noun referring to a research programme initiated by
Giorgi Japaridze in 2003. Its ambition is to redevelop logic from a game-theoretic semantics. Such a semantics sees games as formal equivalents of interactive computational problems, and their "truth" as existence of algorithmic winning strategies. SeeComputability logic .References
*S.C. Kleene. "On the interpretation of intuitionistic number theory". Journal of Symbolic Logic, 10:109-124, 1945.
*J.M.E. Hyland. "The effective topos". InA. S. Troelstra and D. Van Dalen, editors, The L.E.J. Brouwer Centenary Symposium, pages 165-216. North Holland Publishing Company, 1982.
*S. Awodey, L. Birkedal, and D.S. Scott. "Local realizability toposes and a modal logic for computability". Mathematical Structures in Computer Science, 12(3):319-334, 2002.
*G. Japaridze, "Introduction to computability logic". Annals of Pure and Applied Logic 123 (2003), pages 1-99.External links
* [http://www.cs.cmu.edu/Groups/LTC/ Logics of Types and Computation at CMU]
* [http://www.cis.upenn.edu/~giorgi/cl.html Computability Logic Homepage]
* [http://www.csc.villanova.edu/~japaridz/ Giorgi Japaridze]
* [http://www.csc.villanova.edu/~japaridz/CL/gsoll.html Game Semantics or Linear Logic?]ee also
*
Computability logic
*Game semantics
*Interactive computation
Wikimedia Foundation. 2010.