Utm theorem

Utm theorem

In computability theory the utm theorem or universal turing machine theorem is a basic result about Gödel numberings of the set of computable functions. It proves the existence of a computable universal function which is capable of calculating any other computable function. The universal function is an abstract version of the universal turing machine thus the name of the theorem.

Rogers equivalence theorem provides a characterization of the Gödel numbering of the computable functions in terms of the smn theorem and the utm theorem.

utm theorem

Let varphi be a Gödel numbering of the set of computable functions, then the partial function:u_varphi: mathbb{N}^2 o mathbb{N}defined as:u_varphi(i,x) := varphi_i(x) qquad i,x in mathbb{N}is computable.

u_varphi is called the universal function for varphi

References

*cite book | author = Rogers, H. | title = The Theory of Recursive Functions and Effective Computability | publisher = First MIT press paperback edition | year = 1987 | origyear = 1967 | id = ISBN 0-262-68052-1
*cite book | author = Soare, R.| title = Recursively enumerable sets and degrees | series = Perspectives in Mathematical Logic | publisher = Springer-Verlag | year = 1987 | id = ISBN 3-540-15299-7


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Rogers' equivalence theorem — In computability theory Rogers equivalence theorem characterizes the Gödel numberings, or effective numberings of the set of computable functions. The theorem is named after Hartley Rogers, Jr.Equivalence theoremA numbering of the set of… …   Wikipedia

  • Bellsches Theorem — Die Bellsche Ungleichung ist eine Schranke an Mittelwerte von Messwerten, die 1964 von John Bell angegeben wurde. Die Ungleichung gilt in allen physikalischen Theorien, die real und lokal sind und in denen man unabhängig vom zu vermessenden… …   Deutsch Wikipedia

  • Proth's theorem — In mathematics, Proth s theorem in number theory is a primality test for Proth numbers. It states that if p is a Proth number, of the form k 2 n + 1 with k odd and k < 2 n , then if for some integer a ,:a^{(p 1)/2}equiv 1 pmod{p},!then p is prime …   Wikipedia

  • Korselts Theorem — Eine Carmichael Zahl, benannt nach dem Mathematiker Robert Daniel Carmichael, ist eine spezielle eulersche Pseudoprimzahl, für die gilt: Eine Carmichael Zahl n ist pseudoprim zu allen Basen, die keine gemeinsamen Primfaktoren mit n haben. Jede… …   Deutsch Wikipedia

  • List of mathematics articles (U) — NOTOC U U duality U quadratic distribution U statistic UCT Mathematics Competition Ugly duckling theorem Ulam numbers Ulam spiral Ultraconnected space Ultrafilter Ultrafinitism Ultrahyperbolic wave equation Ultralimit Ultrametric space… …   Wikipedia

  • Universal Turing machine — This article is a supplement to the article Turing machine. Alan Turing s universal computing machine (alternately universal machine , machine U , U ) is the name given by him (1936 1937) to his model of an all purpose a machine (computing… …   Wikipedia

  • Prime number — Prime redirects here. For other uses, see Prime (disambiguation). A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is… …   Wikipedia

  • Maglev — JR Maglev at Yamanashi, Japan test track in November 2005 …   Wikipedia

  • Henri Poincaré — Infobox Scientist box width = 300px name = Henri Poincaré image size = 250px caption = Jules Henri Poincaré (1854 1912). Photograph from the frontispiece of the 1913 edition of Last Thoughts. birth date = birth date|df=yes|1854|4|29 birth place …   Wikipedia

  • Mersenne prime — Named after Marin Mersenne Publication year 1536[1] Author of publication Regius, H. Number of known terms 47 Conjectured number of terms Infinite …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”