Defeasible logic

Defeasible logic

Defeasible logic is a non-monotonic logic proposed by Donald Nute to formalize defeasible reasoning. In defeasible logic, there are three different types of propositions:

strict rules 
specify that a fact is always a consequence of another;
defeasible rules 
specify that a fact is typically a consequence of another;
undercutting defeaters 
specify exceptions to defeasible rules.

A priority ordering over the defeasible rules and the defeaters can be given. During the process of deduction, the strict rules are always applied, while a defeasible rule can be applied only if no defeater of a higher priority specifies that it should not.

See also

References

  • D. Nute (1994). Defeasible logic. In Handbook of logic in artificial intelligence and logic programming, volume 3: Nonmonotonic reasoning and uncertain reasoning, pages 353-395. Oxford University Press.
  • G. Antoniou, D. Billington, G. Governatori, and M. Maher (2001). Representation results for defeasible logic. ACM Transactions on Computational Logic, 2(2):255-287.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Defeasible reasoning — is a kind of reasoning that is based on reasons that are defeasible, as opposed to the indefeasible reasons of deductive logic. Defeasible reasoning is a particular kind of non demonstrative reasoning, where the reasoning does not produce a full …   Wikipedia

  • Non-monotonic logic — A non monotonic logic is a formal logic whose consequence relation is not monotonic. Most studied formal logics have a monotonic consequence relation, meaning that adding a formula to a theory never produces a reduction of its set of consequences …   Wikipedia

  • Default logic — is a non monotonic logic proposed by Raymond Reiter to formalize reasoning with default assumptions. Default logic can express facts like “by default, something is true”; by contrast, standard logic can only express that something is true or that …   Wikipedia

  • Mill, John Stuart: Logic and metaphysics — J.S.Mill Logic and metaphysics John Skorupski ENLIGHTENMENT AND ROMANTICISM IN MILL’S PHILOSOPHY Mill’s importance as one of the major figures of nineteenth century politics and culture, and the current interest in him as a moral and political… …   History of philosophy

  • Circumscription (logic) — Not to be confused with circumscribe. Circumscription is a non monotonic logic created by John McCarthy to formalize the common sense assumption that things are as expected unless otherwise specified. Circumscription was later used by McCarthy in …   Wikipedia

  • Logique Défaisable — La logique défaisable est une logique non monotone proposée par Donald Nute pour formaliser le raisonnement défaisable. En logique défaisable, il y a trois différents types de règles : Les règles strictes  elles spécifient qu un fait… …   Wikipédia en Français

  • Logique defaisable — Logique défaisable La logique défaisable est une logique non monotone proposée par Donald Nute pour formaliser le raisonnement défaisable. En logique défaisable, il y a trois différents types de règles : Les règles strictes  elles… …   Wikipédia en Français

  • Logique défaisable — La logique défaisable est une logique non monotone proposée par Donald Nute pour formaliser le raisonnement défaisable. En logique défaisable, il y a trois différents types de règles : Les règles strictes  elles spécifient qu un fait… …   Wikipédia en Français

  • Lógica retractable — La lógica retractable es una lógica no monotónica propuesta por Donald Nute para formalizar el razonamiento retractable. En esta lógica hay tres tipos diferentes de proposiciones: Reglas estrictas: especifican que un hecho siempre es consecuencia …   Wikipedia Español

  • Argument — This article is about the subject as it is studied in logic and philosophy. For other uses, see Argument (disambiguation). In philosophy and logic, an argument is an attempt to persuade someone of something, by giving reasons or evidence for… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”