Mirimanoff's congruence

Mirimanoff's congruence

In number theory, a branch of mathematics, a Mirimanoff's congruence is one of a collection of expressions in modular arithmetic which, if they hold, entail the truth of Fermat's Last Theorem. Since the theorem has now been proven, these are now of mainly historical significance, though the Mirimanoff polynomials are interesting in their own right. The theorem is due to Dimitri Mirimanoff.

Definition

The nth Mirimanoff polynomial for the prime p is

ϕn(t) = 1n − 1t + 2n − 1t2 + ... + (p − 1)n − 1tp − 1.

In terms of these polynomials, if t is one of the six values {-X/Y, -Y/X, -X/Z, -Z/X, -Y/Z, -Z/Y} where Xp+Yp+Zp=0 is a solution to Fermat's Last Theorem, then

  • φp-1(t) ≡ 0 (mod p)
  • φp-2(t2(t) ≡ 0 (mod p)
  • φp-3(t3(t) ≡ 0 (mod p)
...
  • φ(p+1)/2(t(p-1)/2(t) ≡ 0 (mod p)

Other congruences

Mirimanoff also proved the following:

  • If an odd prime p does not divide one of the numerators of the Bernoulli numbers Bp-3, Bp-5, Bp-7 or Bp-9, then the first case of Fermat's Last Theorem, where p does not divide X, Y or Z in the equation Xp+Yp+Zp=0, holds.
  • If the first case of Fermat's Last Theorem fails for the prime p, then 3p-1 ≡ 1 (mod p2). A prime number with this property is sometimes called a Mirimanoff prime, in analogy to a Wieferich prime which is a prime such that 2p-1 ≡ 1 (mod p2). The existence of primes satisfying such congruences was recognized long before their implications for the first case of Fermat's Last Theorem became apparent; but while the discovery of the first Wieferich prime came after these theoretical developments and was prompted by them, the first instance of a Mirimanoff prime is so small that it was already known before Mirimanoff formulated the connection to FLT in 1910, which fact may explain the reluctance of some writers to use the name. So early as his 1895 paper (p. 298), Mirimanoff alludes to a rather complicated test for the primes now known by his name, deriving from a formula published by Sylvester in 1861, which is of little computational value but great theoretical interest. This test was considerably simplified by Lerch (1905), p. 476, who showed that

3^p-1 \equiv \left(- \frac 23 \cdot \left\{ 1 + \frac 12 + \frac 13 + \frac 14 + \ldots + \left\lfloor p/3 \right\rfloor^{-1}\right\}\right)p + 1 \pmod {p^2}

so that a prime possesses the Mirimanoff property if it divides the expression within the curly braces. The condition was further refined in an important paper by Emma Lehmer (1938), in which she considered the intriguing and still unanswered question of whether it is possible for a number to possess the properties of Wieferich and Mirimanoff simultaneously. To date, the only known Mirimanoff primes are 11 and 1006003 (sequence A014127 in OEIS). The discovery of the second of these appears to be due to K.E. Kloss (1965).

References

  • K.E. Kloss, "Some Number-Theoretic Calculations," Journal of Research of the National Bureau of Standards—B. Mathematics and Mathematical Physics 69 (1965), pp. 335–336.
  • Emma Lehmer, "On Congruences involving Bernoulli Numbers and the Quotients of Fermat and Wilson," Annals of Mathematics 39 (1938), pp. 350–360.
  • M. Lerch, "Zur Theorie des Fermatschen Quotienten…," Mathematische Annalen 60 (1905), pp. 471–490 [1].
  • D. Mirimanoff, "Sur la Congruence (rp−1 − 1):pqr," Journal für die reine und angewandte Mathematik 115 (1895), pp. 295–300 [2]. Some corrections are given in the 1937 paper below.
  • D. Mirimanoff, "Sur le dernier théorème de Fermat et le Critérium de M. A. Wieferich," L'Enseignement Mathématique 11 (1909), pp. 455–459 [3].
  • D. Mirimanoff, "Sur le dernier théorème de Fermat," Comptes rendus hebdomadaires des séances de l'Académie des Sciences 150 (1910), pp. 204–206; a revised and expanded version of this paper appeared under the same title in Journal für die reine und angewandte Mathematik 139 (1911), pp. 309–324 [4].
  • D. Mirimanoff, "Sur les nombres de Bernoulli," L'Enseignement Mathématique 36 (1937), pp. 228–235 [5].
  • Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer, 2006

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Dmitry Mirimanoff — Dmitry Semionovitch Mirimanoff (Russian: Дмитрий Семёнович Мириманов) (September 13, 1861, Pereslavl Zalessky, Russia – January 5, 1945, Geneva, Switzerland) became a doctor of mathematical sciences in 1900, in Geneva, and taught at the… …   Wikipedia

  • Dimitri Mirimanoff — was born in Pereiasslavl Zalesski (Russia) on September 13, 1861. He became a doctor of mathematical sciences in 1900, in Geneva, and taught at the universities of Geneva and Lausanne. Mirimanoff made notable contributions to number theory… …   Wikipedia

  • List of prime numbers — This is an incomplete list, which may never be able to satisfy particular standards for completeness. You can help by expanding it with reliably sourced entries. By Euclid s theorem, there are an infinite number of prime numbers. Subsets of the… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • DIOPHANTIENNES (ÉQUATIONS) — Diophante d’Alexandrie, vers les années 250 de notre ère, fut le premier à rechercher systématiquement les solutions en nombres entiers, ou rationnels, d’une équation ou d’un système d’équations polynomiales à coefficients entiers. Bien que ce ne …   Encyclopédie Universelle

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Wieferich-Primzahl — Eine Wieferich Primzahl ist eine Primzahl p mit der Eigenschaft, dass 2p−1 − 1 durch p2 teilbar ist. Alternativ kann man dies auch als Kongruenz schreiben: Solche Primzahlen wurden 1909 von dem deutschen Mathematiker Arthur Wieferich… …   Deutsch Wikipedia

  • Nombre De Wieferich — En mathématiques, un nombre premier de Wieferich est un nombre premier p tel que divise , comparer ceci avec le petit théorème de Fermat, qui énonce que chaque nombre premier p divise . Les nombres premiers de Wieferich furent décrits en premier… …   Wikipédia en Français

  • Nombre de Wieferich — En mathématiques, un nombre premier de Wieferich est un nombre premier p tel que divise , comparer ceci avec le petit théorème de Fermat, qui énonce que chaque nombre premier p divise . Les nombres premiers de Wieferich furent décrits en premier… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”