Dynkin system

Dynkin system

A Dynkin system, named in honor of the Russian mathematician Eugene Dynkin, is a collection of subsets of another universal set Omega satisfying some specific rules. They are also referred to as λ-systems.

Definitions

Let Omega be a nonempty set, and let D be a collection of subsets of Omega, i.e. D is a subset of the power set of Omega. Then D is a Dynkin system if
* the set Omega itself is in D
* D is closed under relative complementation, i.e. A,Bin D and A subseteq B implies B setminus A in D
* D is closed under the countable union of increasing sequences, i.e. A_nin D and A_n subseteq A_{n+1}, n ge 1 implies cup_{n=1}^{infty}A_nin D.

D is a λ-system if
* the set Omega itself is in D
* D is closed under complementation, i.e. Ain D implies A^cin D
* D is closed under disjoint countable unions, i.e. A_nin D, ngeq1 with A_icap A_j=emptyset for all i eq j implies cup_{n=1}^infty A_nin D.

It can be shown that these two definitions are logically equivalent, so that Dynkin systems are λ-systems and vice versa.

A Dynkin system which is also a π-system is a σ-algebra.

Given any collection mathcal{J} of subsets of Omega, there exists a unique Dynkin system denoted D{mathcal J} which is minimal with respect to containing mathcal J. That is, if ilde D is any Dynkin system containing mathcal J, then D{mathcal J}subseteq ilde D. D{mathcal J} is called the Dynkin system generated by mathcal{J}. Note D{emptyset}={emptyset,Omega}. For another example, let Omega={1,2,3,4} and mathcal J={1}; then D{mathcal J}={emptyset,{1},{2,3,4},Omega}.

Dynkin's π-λ Theorem

If P is a π-system and D is a Dynkin system with Psubseteq D, then sigma{P}subseteq D. In other words, the σ-algebra generated by P is contained in D.

One application of Dynkin's π-λ theorem is the uniqueness of the Lebesgue measure:

Let (&Omega;, "B", &lambda;) be the unit interval [0,1] with the Lebesgue measure on Borel sets. Let &mu; be another measure on &Omega; satisfying &mu; [("a","b")] = "b" - "a", and let "D" be the family of sets such that &mu; [D] = &lambda; [D] . Let "I" = { ("a","b"), ["a","b"),("a","b"] , ["a","b"] : 0 < "a" &le; "b" < 1 }, and observe that "I" is closed under finite intersections, that "I" &sub; "D", and that "B" is the &sigma;-algebra generated by "I". One easily shows "D" satisfies the above conditions for a Dynkin-system. From Dynkin's lemma it follows that "D" is in fact all of "B", which is equivalent to showing that the Lebesgue measure is unique.

Bibliography

* cite book
last = Gut
first = Allan
title = Probability: A Graduate Course
publisher = Springer
year = 2005
location = New York
doi = 10.1007/b138932
isbn = 0-387-22833-0

* cite book
last = Billingsley
first = Patrick
title = Probability and Measure
publisher = John Wiley & Sons, Inc.
year = 1995
location = New York
isbn = 0-471-00710-2

*----


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Dynkin-System — Ein Dynkin System ist ein Begriff aus der Maßtheorie, einem Teilgebiet der Mathematik. Es ist benannt nach dem russischen Mathematiker Eugene Dynkin. Inhaltsverzeichnis 1 Definition 2 Operator 3 Zusammenhang mit σ Algebra …   Deutsch Wikipedia

  • Dynkin — Eugene B. Dynkin (ursprünglich Jewgeni Borissowitsch Dynkin / russisch Евгений Борисович Дынкин; * 11. Mai 1924 in Leningrad) ist ein russischer Mathematiker. Inhaltsverzeichnis 1 Leben 2 Werk 3 Ehrungen …   Deutsch Wikipedia

  • Dynkin diagram — See also: Coxeter–Dynkin diagram Finite Dynkin diagrams Affine (extended) Dynkin diagrams …   Wikipedia

  • Dynkin-Diagramm — Wurzelsysteme dienen in der Mathematik als Hilfsmittel zur Klassifikation der endlichen Spiegelungsgruppen und der endlichdimensionalen halbeinfachen komplexen Lie Algebren. Inhaltsverzeichnis 1 Definitionen 2 Skalarprodukt 3 Weylgruppe …   Deutsch Wikipedia

  • Eugene Dynkin — Eugene Borisovich Dynkin ( ru. Евгений Борисович Дынкин; born May 11, 1924) is a Russian mathematician. He has made contributions to the fields of probability and algebra, especially semisimple Lie groups, Lie algebras, and Markov processes. The… …   Wikipedia

  • Eugene Dynkin — 1976 Eugene B. Dynkin (ursprünglich Jewgeni Borissowitsch Dynkin / russisch Евгений Борисович Дынкин; * 11. Mai 1924 in Leningrad) ist ein russischer Mathematiker …   Deutsch Wikipedia

  • Pi system — In mathematics, a pi; system on a set Omega; is a set P , consisting of certain subsets of Omega;, such that* P is non empty.* A cap; B isin; P whenever A and B are in P .That is, P is a non empty family of subsets of Omega; that is closed under… …   Wikipedia

  • Doob–Dynkin lemma — In mathematics, the Doob–Dynkin lemma, named after Joseph Doob and Eugene Dynkin, is a statement in probability theory that characterizes the situation when one random variable is a function of another, in terms of measurability and σ algebras.… …   Wikipedia

  • Root system — This article discusses root systems in mathematics. For root systems of plants, see root. Lie groups …   Wikipedia

  • Coxeter-Dynkin diagram — In geometry, a Coxeter Dynkin diagram is a graph with labelled edges. It represents the spatial relations between a collection of mirrors (or reflecting hyperplanes), and describes a kaleidoscopic construction.The diagram represents a Coxeter… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”