Odlyzko–Schönhage algorithm

Odlyzko–Schönhage algorithm

In mathematics, the Odlyzko–Schönhage algorithm is a fast algorithm for evaluating the Riemann zeta function at many points, introduced by (Odlyzko & Schönhage 1988). The key point is the use of the fast Fourier transform to speed up the evaluation of a finite Dirichlet series of length N at O(N) equally spaced values from O(N2) to O(N1+ε) steps (at the cost of storing O(N1+ε) intermediate values). The Riemann–Siegel formula used for calculating the Riemann zeta function with imaginary part T uses a finite Dirichlet series with about N = T1/2 terms, so when finding about N values of the Riemann zeta function it is sped up by a factor of about T1/2. This reduces the time to find the zeros of the zeta function with imaginary part at most T from about T3/2+ε steps to about T1+ε steps.

The algorithm can be used not just for the Riemann zeta function, but also for many other functions given by Dirichlet series.

The algorithm was used by Gourdon (2004) to verify the Riemann hypothesis for the first 1013 zeros of the zeta function.

References



Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Odlyzko-Schönhage algorithm — In mathematics, the Odlyzko Schönhage algorithm, named after Andrew Odlyzko and Arnold Schönhage, is a fast algorithm for evaluating the Riemann zeta function, introduced in harv|Odlyzko|Schönhage|1988. It is used for finding large numbers of… …   Wikipedia

  • Arnold Schönhage — (born 1934) is a mathematician and computer scientist and Professor Emeritus at Rheinische Friedrich Wilhelms Universität, Bonn. He was also professor in Tübingen and Konstanz. Schönhage now lives near Bonn, Germany.Schönhage together with Volker …   Wikipedia

  • Andrew Odlyzko — Born 23 July 1949 Tarnów, Poland Fields Mathematics Instituti …   Wikipedia

  • Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 …   Wikipedia

  • Hypothèse de Riemann — Représentation du module de la fonction zêta de Riemann. En mathématiques, l hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann. Elle dit que les zéros non triviaux de la fonction zêta d …   Wikipédia en Français

  • List of algorithms — The following is a list of the algorithms described in Wikipedia. See also the list of data structures, list of algorithm general topics and list of terms relating to algorithms and data structures.If you intend to describe a new algorithm,… …   Wikipedia

  • Formule de Riemann-Siegel — En mathématiques, et plus précisément en analyse, la formule de Riemann Siegel est une estimation asymptotique de l erreur de l équation fonctionnelle d approximation de la fonction zêta de Riemann, c est à dire une approximation de la fonction… …   Wikipédia en Français

  • List of mathematics articles (O) — NOTOC O O minimal theory O Nan group O(n) Obelus Oberwolfach Prize Object of the mind Object theory Oblate spheroid Oblate spheroidal coordinates Oblique projection Oblique reflection Observability Observability Gramian Observable subgroup… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”