Neumann polynomial

Neumann polynomial

In mathematics, a Neumanns polynomial, introduced by Carl Neumann for the special case α = 0, is a polynomial in 1/z used to expand functions in term of Bessel functions.[1]

The first few polynomials are

O_0^{(\alpha)}(t)=\frac 1 t,
O_1^{(\alpha)}(t)=2\frac {\alpha+1}{t^2},
O_2^{(\alpha)}(t)=\frac {2+\alpha}{t}+ 4\frac {(2+\alpha)(1+\alpha)}{t^3},
O_3^{(\alpha)}(t)=2\frac {(1+\alpha)(3+\alpha)}{t^2}+ 8\frac {(1+\alpha)(2+\alpha)(3+\alpha)}{t^4},
O_4^{(\alpha)}(t)=\frac {(1+\alpha)(4+\alpha)}{2t}+ 4\frac {(1+\alpha)(2+\alpha)(4+\alpha)}{t^3}+ 16\frac {(1+\alpha)(2+\alpha)(3+\alpha)(4+\alpha)}{t^5}.

A general form for the polynomial is

O_n^{(\alpha)}(t)= \frac{\alpha+n}{2\alpha} \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^{n-k}\frac {(n-k)!} {k!} {-\alpha \choose n-k}\left(\frac 2 t \right)^{n+1-2k},

they have the generating function

\frac{\left(\frac z 2 \right)^\alpha} {\Gamma(\alpha+1)} \frac 1 {t-z}= \sum_{n=0}O_n^{(\alpha)}(t) J_{\alpha+n}(z),

where J are Bessel functions.

To expand a function f in form

f(z)=\sum_{n=0} a_n J_{\alpha+n}(z)\,

for | z | < c compute

a_n=\frac 1 {2 \pi i} \oint_{|z|=c'} \frac{\Gamma(\alpha+1)}{\left(\frac z 2\right)^\alpha}f(z) O_n^{(\alpha)}(z)\mathrm d z,

where c' < c and c is the distance of the nearest singularity of z − αf(z) from z = 0.

Examples

An example is the extension

\left(\tfrac{1}{2}z\right)^s= \Gamma(s)\cdot\sum_{k=0}(-1)^k J_{s+2k}(z)(s+2k){-s \choose k}

or the more general Sonine formula[2]

e^{i \gamma z}= \Gamma(s)\cdot\sum_{k=0}i^k C_k^{(s)}(\gamma)(s+k)\frac{J_{s+k}(z)}{\left(\frac z 2\right)^s}.

where C_k^{(s)} is Gegenbauer's polynomial. Then,[citation needed][original research?]

\frac{\left(\frac z 2\right)^{2k}}{(2k-1)!}J_s(z)= \sum_{i=k}(-1)^{i-k}{i+k-1\choose 2k-1}{i+k+s-1\choose 2k-1}(s+2i)J_{s+2i}(z),
\sum_{n=0} t^n J_{s+n}(z)= \frac{e^{\frac{t z}2}}{t^s} \sum_{j=0}\frac{\left(-\frac{z}{2t}\right)^j}{j!}\frac{\gamma \left(j+s,\frac{t z}{2}\right)}{\,\Gamma (j+s)}= \int_0^\infty e^{-\frac{z x^2}{2 t}}\frac {z x}{t} \frac{J_s(z\sqrt{1-x^2})}{\sqrt{1-x^2}^s}\,dx,

the confluent hypergeometric function

M(a,s,z)= \Gamma (s) \sum_{k=0}^\infty \left(-\frac{1}{t}\right)^k L_k^{(-a-k)}(t) \frac{J_{s+k-1}\left(2 \sqrt{t z}\right)}{(\sqrt{t z})^{s-k-1}}

and in particular

\frac{J_s(2 z)}{z^s}= \frac{4^s \Gamma\left(s+\frac12\right)}{\sqrt\pi}e^{2 i z}\sum_{k=0}L_k^{(-s-1/2-k)}\left(\frac{it}4\right)(4 i z)^k \frac{J_{2s+k}\left(2\sqrt{t z}\right)}{\sqrt{t z}^{2s+k}},

the index shift formula

\Gamma(\nu-\mu) J_\nu(z)= \Gamma(\mu+1) \sum_{n=0}\frac{\Gamma(\nu-\mu+n)}{n!\Gamma(\nu+n+1)} \left(\frac z 2\right)^{\nu-\mu+n}J_{\mu+n}(z),

the Taylor expansion (addition formula)

\frac{J_s\left(\sqrt{z^2-2uz}\right)}{\left(\sqrt{z^2-2uz}\right)^{\pm s}}= \sum_{k=0}\frac{(\pm u)^k}{k!}\frac{J_{s\pm k}(z)}{z^{\pm s}}

(cf. [3][not in citation given]) and the expansion of the integral of the Bessel function

\int J_s(z)dz= 2 \sum_{k=0} J_{s+2k+1}(z)

are of the same type.

See also

Notes

  1. ^ Abramowitz and Stegun, p. 363, 9.1.82 ff.
  2. ^ Erdélyi et al. 1955 II.7.10.1, p.64
  3. ^ I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжи); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Equation 8.515.1

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Von Neumann's inequality — In operator theory, von Neumann s inequality, due to John von Neumann, states that, for a contraction T acting on a Hilbert space and a polynomial p , then the norm of p ( T ) is bounded by the supremum of | p ( z )| for z in the unit disk. [… …   Wikipedia

  • Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the …   Wikipedia

  • Polynôme de Lommel — Pour les articles homonymes, voir Lommel (homonymie). Les polynômes de Lommel, Rm,ν(z), introduits par Eugen von Lommel en 1871, sont des polynômes en 1/z vérifiant la relation suivante: où Jν(z) est la fonction de Bessel du premier ordre. Ils… …   Wikipédia en Français

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

  • automata theory — Body of physical and logical principles underlying the operation of any electromechanical device (an automaton) that converts information input in one form into another, or into some action, according to an algorithm. Norbert Wiener and Alan M.… …   Universalium

  • Holomorphic functional calculus — In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function fnof; of a complex argument z and an operator T , the aim is to construct an operator:f(T),which in a… …   Wikipedia

  • Linear programming — (LP, or linear optimization) is a mathematical method for determining a way to achieve the best outcome (such as maximum profit or lowest cost) in a given mathematical model for some list of requirements represented as linear relationships.… …   Wikipedia

  • Issai Schur — Issai Schur[1] (* 10. Januar 1875 in Mogiljow; † 10. Januar 1941 in Tel Aviv) war ein Mathematiker, der die meiste Zeit seines Lebens in Deutschland arbeitete. Als Student von Frobenius arbeitete er über Darstellungstheorie von Gruppen, aber auch …   Deutsch Wikipedia

  • Vaughan Jones — Infobox Scientist box width = name = Vaughan Frederick Randal Jones image size = caption = Vaughan Jones in 2007 birth date = Birth date and age|1952|12|31 birth place = Gisborne, New Zealand death date = death place = residence = citizenship =… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”