Modular lambda function

Modular lambda function

In mathematics, the elliptic modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve \mathbb{C}/\langle 1, \tau \rangle, where the map is defined as the quotient by the [ − 1] involution.

The q-expansion is given by:

 \lambda(\tau) = 16q^{1/2} - 128q + 704 q^{3/2} - 3072q^2 + 11488q^{5/2} - 38400q^3 + \dots.

By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group SL_2(\mathbb{Z}), and it is in fact Klein's modular j-invariant.

Other appearances

It is the square of the Jacobi modulus, i.e.,  \lambda(\tau) = k^2 (\tau). \, .

The function \frac{16}{\lambda(2\tau)} - 8 is the normalized Hauptmodul for the group Γ0(4), and its q-expansion q^{-1} + 20q - 62q^3 + \dots is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra.

References

External links



Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Modular form — In mathematics, a modular form is a (complex) analytic function on the upper half plane satisfying a certain kind of functional equation and growth condition. The theory of modular forms therefore belongs to complex analysis but the main… …   Wikipedia

  • Modular group — For a group whose lattice of subgroups is modular see Iwasawa group. In mathematics, the modular group Γ is a fundamental object of study in number theory, geometry, algebra, and many other areas of advanced mathematics. The modular group can be… …   Wikipedia

  • Arithmetic function — In number theory, an arithmetic (or arithmetical) function is a real or complex valued function ƒ(n) defined on the set of natural numbers (i.e. positive integers) that expresses some arithmetical property of n. [1] An example of an arithmetic… …   Wikipedia

  • Mock modular form — In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa… …   Wikipedia

  • Dirichlet eta function — For the modular form see Dedekind eta function. Dirichlet eta function η(s) in the complex plane. The color of a point s encodes the value of η(s). Strong colors denote values close to zero and hue encodes the value s argumen …   Wikipedia

  • Artin L-function — In mathematics, an Artin L function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G . These functions were introduced in the 1923 by Emil Artin, in connection with his research into class field theory.… …   Wikipedia

  • Theta function of a lattice — In mathematics, the theta function of a lattice is a function whose coefficients give the number of vectors of a given norm. Definition One can associate to any (positive definite) lattice Λ a theta function given by The theta function of a… …   Wikipedia

  • Elliptic curve — In mathematics, an elliptic curve is a smooth, projective algebraic curve of genus one, on which there is a specified point O . An elliptic curve is in fact an abelian variety mdash; that is, it has a multiplication defined algebraically with… …   Wikipedia

  • List of mathematical functions — In mathematics, several functions or groups of functions are important enough to deserve their own names. This is a listing of pointers to those articles which explain these functions in more detail. There is a large theory of special functions… …   Wikipedia

  • Weierstrass's elliptic functions — In mathematics, Weierstrass s elliptic functions are elliptic functions that take a particularly simple form; they are named for Karl Weierstrass. This class of functions are also referred to as p functions and generally written using the symbol… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”