Milliken–Taylor theorem

Milliken–Taylor theorem

In mathematics, the Milliken–Taylor theorem in combinatorics is a generalization of both Ramsey's theorem and Hindman's theorem. It is named after Keith Milliken and Alan D. Taylor.

Let \mathcal{P}_f(\mathbb{N}) denote the set of finite subsets of \mathbb{N}. Given a sequence of integers \langle a_n \rangle_{n=0}^\infty \subset \mathbb{N} and k > 0 let

[FS(\langle a_n \rangle_{n=0}^\infty)]^k_< = \left \{ \left \{ \sum_{t \in \alpha_1}a_t, \ldots , \sum_{t \in \alpha_k}a_t \right \}: \alpha_1 <\cdots < \alpha_k \in \mathcal{P}_f(\mathbb{N}) \right \},

where \alpha < \beta \in \mathcal{P}_f(\mathbb{N}) if and only if max α<min β. Let [S]k denote the k-element subsets of a set S. The Milliken–Taylor theorem says that for any finite partition [\mathbb{N}]^k=C_1 \cup C_2 \cup \cdots \cup C_r, there exist some i < r + 1 and a sequence \langle a_n \rangle_{n=0}^{\infty} \subset \mathbb{N} such that [FS(\langle a_n \rangle_{n=0}^{\infty})]^k_< \subset C_i.

For each \langle a_n \rangle_{n=0}^\infty \subset \mathbb{N}, call [FS(\langle a_n \rangle_{n=0}^\infty)]^k_< an MTk set. Then, alternatively, the Milliken–Taylor theorem asserts that the collection of MTk sets is partition regular for each k.

References

  1. K. Milliken, Ramsey's Theorem with sums or unions, J. Comb. Theory (Series A) 18 (1975), 276–290
  2. A. Taylor, A canonical partition relation for finite subsets of ω, J. Comb. Theory (Series A) 21 (1976), 137–146